mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-12 08:07:03 -07:00
Added interactive converter.
With interactive converter you can change any parameter of any frame and see the result in real time. Converter: added motion_blur_power param. Motion blur is applied by precomputed motion vectors. So the moving face will look more realistic. RecycleGAN model is removed. Added experimental AVATAR model. Minimum required VRAM is 6GB (NVIDIA), 12GB (AMD) Usage: 1) place data_src.mp4 10-20min square resolution video of news reporter sitting at the table with static background, other faces should not appear in frames. 2) process "extract images from video data_src.bat" with FULL fps 3) place data_dst.mp4 video of face who will control the src face 4) process "extract images from video data_dst FULL FPS.bat" 5) process "data_src mark faces S3FD best GPU.bat" 6) process "data_dst extract unaligned faces S3FD best GPU.bat" 7) train AVATAR.bat stage 1, tune batch size to maximum for your card (32 for 6GB), train to 50k+ iters. 8) train AVATAR.bat stage 2, tune batch size to maximum for your card (4 for 6GB), train to decent sharpness. 9) convert AVATAR.bat 10) converted to mp4.bat updated versions of modules
This commit is contained in:
parent
3f0bf2e994
commit
407ce3b1ca
46 changed files with 2394 additions and 1659 deletions
392
converters/ConvertMasked.py
Normal file
392
converters/ConvertMasked.py
Normal file
|
@ -0,0 +1,392 @@
|
|||
import traceback
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
import imagelib
|
||||
from facelib import FaceType, LandmarksProcessor
|
||||
from interact import interact as io
|
||||
from utils.cv2_utils import *
|
||||
|
||||
|
||||
def ConvertMaskedFace (cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmarks):
|
||||
|
||||
#if debug:
|
||||
# debugs = [img_bgr.copy()]
|
||||
|
||||
img_size = img_bgr.shape[1], img_bgr.shape[0]
|
||||
|
||||
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
|
||||
|
||||
if cfg.mode == 'original':
|
||||
if cfg.export_mask_alpha:
|
||||
img_bgr = np.concatenate ( [img_bgr, img_face_mask_a], -1 )
|
||||
return img_bgr, img_face_mask_a
|
||||
|
||||
out_img = img_bgr.copy()
|
||||
out_merging_mask = None
|
||||
|
||||
output_size = cfg.predictor_input_shape[0]
|
||||
if cfg.super_resolution:
|
||||
output_size *= 2
|
||||
|
||||
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type)
|
||||
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type, scale= 1.0 + 0.01*cfg.output_face_scale )
|
||||
|
||||
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
|
||||
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
|
||||
|
||||
predictor_input_bgr = cv2.resize (dst_face_bgr, cfg.predictor_input_shape[0:2] )
|
||||
|
||||
if cfg.predictor_masked:
|
||||
prd_face_bgr, prd_face_mask_a_0 = cfg.predictor_func (predictor_input_bgr)
|
||||
|
||||
prd_face_bgr = np.clip (prd_face_bgr, 0, 1.0 )
|
||||
prd_face_mask_a_0 = np.clip (prd_face_mask_a_0, 0.0, 1.0)
|
||||
else:
|
||||
predicted = cfg.predictor_func (predictor_input_bgr)
|
||||
prd_face_bgr = np.clip (predicted, 0, 1.0 )
|
||||
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, cfg.predictor_input_shape[0:2] )
|
||||
|
||||
if cfg.super_resolution:
|
||||
#if debug:
|
||||
# tmp = cv2.resize (prd_face_bgr, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
# debugs += [ np.clip( cv2.warpAffine( tmp, face_output_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
prd_face_bgr = cfg.dcscn_upscale_func(prd_face_bgr)
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
if cfg.predictor_masked:
|
||||
prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
|
||||
else:
|
||||
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
|
||||
|
||||
if cfg.mask_mode == 2: #dst
|
||||
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
elif cfg.mask_mode >= 3 and cfg.mask_mode <= 7:
|
||||
|
||||
if cfg.mask_mode == 3 or cfg.mask_mode == 5 or cfg.mask_mode == 6:
|
||||
prd_face_fanseg_bgr = cv2.resize (prd_face_bgr, (cfg.fanseg_input_size,)*2 )
|
||||
prd_face_fanseg_mask = cfg.fanseg_extract_func(FaceType.FULL, prd_face_fanseg_bgr)
|
||||
FAN_prd_face_mask_a_0 = cv2.resize ( prd_face_fanseg_mask, (output_size, output_size), cv2.INTER_CUBIC)
|
||||
|
||||
if cfg.mask_mode >= 4 or cfg.mask_mode <= 7:
|
||||
|
||||
full_face_fanseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, cfg.fanseg_input_size, face_type=FaceType.FULL)
|
||||
dst_face_fanseg_bgr = cv2.warpAffine(img_bgr, full_face_fanseg_mat, (cfg.fanseg_input_size,)*2, flags=cv2.INTER_CUBIC )
|
||||
dst_face_fanseg_mask = cfg.fanseg_extract_func( FaceType.FULL, dst_face_fanseg_bgr )
|
||||
|
||||
if cfg.face_type == FaceType.FULL:
|
||||
FAN_dst_face_mask_a_0 = cv2.resize (dst_face_fanseg_mask, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
elif cfg.face_type == FaceType.HALF:
|
||||
half_face_fanseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, cfg.fanseg_input_size, face_type=FaceType.HALF)
|
||||
|
||||
fanseg_rect_corner_pts = np.array ( [ [0,0], [cfg.fanseg_input_size-1,0], [0,cfg.fanseg_input_size-1] ], dtype=np.float32 )
|
||||
a = LandmarksProcessor.transform_points (fanseg_rect_corner_pts, half_face_fanseg_mat, invert=True )
|
||||
b = LandmarksProcessor.transform_points (a, full_face_fanseg_mat )
|
||||
m = cv2.getAffineTransform(b, fanseg_rect_corner_pts)
|
||||
FAN_dst_face_mask_a_0 = cv2.warpAffine(dst_face_fanseg_mask, m, (cfg.fanseg_input_size,)*2, flags=cv2.INTER_CUBIC )
|
||||
FAN_dst_face_mask_a_0 = cv2.resize (FAN_dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
else:
|
||||
raise ValueError ("cfg.face_type unsupported")
|
||||
|
||||
if cfg.mask_mode == 3: #FAN-prd
|
||||
prd_face_mask_a_0 = FAN_prd_face_mask_a_0
|
||||
elif cfg.mask_mode == 4: #FAN-dst
|
||||
prd_face_mask_a_0 = FAN_dst_face_mask_a_0
|
||||
elif cfg.mask_mode == 5:
|
||||
prd_face_mask_a_0 = FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
|
||||
elif cfg.mask_mode == 6:
|
||||
prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
|
||||
elif cfg.mask_mode == 7:
|
||||
prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_dst_face_mask_a_0
|
||||
|
||||
prd_face_mask_a_0[ prd_face_mask_a_0 < 0.001 ] = 0.0
|
||||
|
||||
prd_face_mask_a = prd_face_mask_a_0[...,np.newaxis]
|
||||
prd_face_mask_aaa = np.repeat (prd_face_mask_a, (3,), axis=-1)
|
||||
|
||||
img_face_mask_aaa = cv2.warpAffine( prd_face_mask_aaa, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )
|
||||
img_face_mask_aaa = np.clip (img_face_mask_aaa, 0.0, 1.0)
|
||||
img_face_mask_aaa [ img_face_mask_aaa <= 0.1 ] = 0.0 #get rid of noise
|
||||
|
||||
#if debug:
|
||||
# debugs += [img_face_mask_aaa.copy()]
|
||||
|
||||
if 'raw' in cfg.mode:
|
||||
face_corner_pts = np.array ([ [0,0], [output_size-1,0], [output_size-1,output_size-1], [0,output_size-1] ], dtype=np.float32)
|
||||
square_mask = np.zeros(img_bgr.shape, dtype=np.float32)
|
||||
cv2.fillConvexPoly(square_mask, \
|
||||
LandmarksProcessor.transform_points (face_corner_pts, face_output_mat, invert=True ).astype(np.int), \
|
||||
(1,1,1) )
|
||||
|
||||
if cfg.mode == 'raw-rgb':
|
||||
out_merging_mask = square_mask
|
||||
|
||||
if cfg.mode == 'raw-rgb' or cfg.mode == 'raw-rgb-mask':
|
||||
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
||||
|
||||
if cfg.mode == 'raw-rgb-mask':
|
||||
out_img = np.concatenate ( [out_img, np.expand_dims (img_face_mask_aaa[:,:,0],-1)], -1 )
|
||||
out_merging_mask = square_mask
|
||||
|
||||
elif cfg.mode == 'raw-mask-only':
|
||||
out_img = img_face_mask_aaa
|
||||
out_merging_mask = img_face_mask_aaa
|
||||
elif cfg.mode == 'raw-predicted-only':
|
||||
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
||||
out_merging_mask = square_mask
|
||||
|
||||
out_img = np.clip (out_img, 0.0, 1.0 )
|
||||
else:
|
||||
#averaging [lenx, leny, maskx, masky] by grayscale gradients of upscaled mask
|
||||
ar = []
|
||||
for i in range(1, 10):
|
||||
maxregion = np.argwhere( img_face_mask_aaa > i / 10.0 )
|
||||
if maxregion.size != 0:
|
||||
miny,minx = maxregion.min(axis=0)[:2]
|
||||
maxy,maxx = maxregion.max(axis=0)[:2]
|
||||
lenx = maxx - minx
|
||||
leny = maxy - miny
|
||||
if min(lenx,leny) >= 4:
|
||||
ar += [ [ lenx, leny] ]
|
||||
|
||||
if len(ar) > 0:
|
||||
lenx, leny = np.mean ( ar, axis=0 )
|
||||
lowest_len = min (lenx, leny)
|
||||
#if debug:
|
||||
# io.log_info ("lenx/leny:(%d/%d) " % (lenx, leny ) )
|
||||
# io.log_info ("lowest_len = %f" % (lowest_len) )
|
||||
|
||||
if cfg.erode_mask_modifier != 0:
|
||||
ero = int( lowest_len * ( 0.126 - lowest_len * 0.00004551365 ) * 0.01*cfg.erode_mask_modifier )
|
||||
#if debug:
|
||||
# io.log_info ("erode_size = %d" % (ero) )
|
||||
if ero > 0:
|
||||
img_face_mask_aaa = cv2.erode(img_face_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
|
||||
elif ero < 0:
|
||||
img_face_mask_aaa = cv2.dilate(img_face_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
|
||||
|
||||
if cfg.clip_hborder_mask_per > 0: #clip hborder before blur
|
||||
prd_hborder_rect_mask_a = np.ones ( prd_face_mask_a.shape, dtype=np.float32)
|
||||
prd_border_size = int ( prd_hborder_rect_mask_a.shape[1] * cfg.clip_hborder_mask_per )
|
||||
prd_hborder_rect_mask_a[:,0:prd_border_size,:] = 0
|
||||
prd_hborder_rect_mask_a[:,-prd_border_size:,:] = 0
|
||||
prd_hborder_rect_mask_a[-prd_border_size:,:,:] = 0
|
||||
prd_hborder_rect_mask_a = np.expand_dims(cv2.blur(prd_hborder_rect_mask_a, (prd_border_size, prd_border_size) ),-1)
|
||||
|
||||
img_prd_hborder_rect_mask_a = cv2.warpAffine( prd_hborder_rect_mask_a, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )
|
||||
img_prd_hborder_rect_mask_a = np.expand_dims (img_prd_hborder_rect_mask_a, -1)
|
||||
img_face_mask_aaa *= img_prd_hborder_rect_mask_a
|
||||
img_face_mask_aaa = np.clip( img_face_mask_aaa, 0, 1.0 )
|
||||
|
||||
#if debug:
|
||||
# debugs += [img_face_mask_aaa.copy()]
|
||||
|
||||
if cfg.blur_mask_modifier > 0:
|
||||
blur = int( lowest_len * 0.10 * 0.01*cfg.blur_mask_modifier )
|
||||
#if debug:
|
||||
# io.log_info ("blur_size = %d" % (blur) )
|
||||
if blur > 0:
|
||||
img_face_mask_aaa = cv2.blur(img_face_mask_aaa, (blur, blur) )
|
||||
|
||||
img_face_mask_aaa = np.clip( img_face_mask_aaa, 0, 1.0 )
|
||||
|
||||
|
||||
#if debug:
|
||||
# debugs += [img_face_mask_aaa.copy()]
|
||||
|
||||
if 'seamless' not in cfg.mode and cfg.color_transfer_mode != 0:
|
||||
if cfg.color_transfer_mode == 1:
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
prd_face_bgr = imagelib.reinhard_color_transfer ( np.clip( (prd_face_bgr*255).astype(np.uint8), 0, 255),
|
||||
np.clip( (dst_face_bgr*255).astype(np.uint8), 0, 255),
|
||||
source_mask=prd_face_mask_a, target_mask=prd_face_mask_a)
|
||||
prd_face_bgr = np.clip( prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
|
||||
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
|
||||
elif cfg.color_transfer_mode == 2:
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
prd_face_bgr = imagelib.linear_color_transfer (prd_face_bgr, dst_face_bgr)
|
||||
prd_face_bgr = np.clip( prd_face_bgr, 0.0, 1.0)
|
||||
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
if cfg.mode == 'hist-match-bw':
|
||||
prd_face_bgr = cv2.cvtColor(prd_face_bgr, cv2.COLOR_BGR2GRAY)
|
||||
prd_face_bgr = np.repeat( np.expand_dims (prd_face_bgr, -1), (3,), -1 )
|
||||
|
||||
if cfg.mode == 'hist-match' or cfg.mode == 'hist-match-bw':
|
||||
#if debug:
|
||||
# debugs += [ cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ) ]
|
||||
|
||||
hist_mask_a = np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
|
||||
|
||||
if cfg.masked_hist_match:
|
||||
hist_mask_a *= prd_face_mask_a
|
||||
|
||||
white = (1.0-hist_mask_a)* np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
|
||||
|
||||
hist_match_1 = prd_face_bgr*hist_mask_a + white
|
||||
hist_match_1[ hist_match_1 > 1.0 ] = 1.0
|
||||
|
||||
hist_match_2 = dst_face_bgr*hist_mask_a + white
|
||||
hist_match_2[ hist_match_1 > 1.0 ] = 1.0
|
||||
|
||||
prd_face_bgr = imagelib.color_hist_match(hist_match_1, hist_match_2, cfg.hist_match_threshold )
|
||||
|
||||
#if cfg.masked_hist_match:
|
||||
# prd_face_bgr -= white
|
||||
|
||||
if cfg.mode == 'hist-match-bw':
|
||||
prd_face_bgr = prd_face_bgr.astype(dtype=np.float32)
|
||||
|
||||
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
||||
out_img = np.clip(out_img, 0.0, 1.0)
|
||||
|
||||
#if debug:
|
||||
# debugs += [out_img.copy()]
|
||||
|
||||
if cfg.mode == 'overlay':
|
||||
pass
|
||||
|
||||
if 'seamless' in cfg.mode:
|
||||
#mask used for cv2.seamlessClone
|
||||
img_face_seamless_mask_a = None
|
||||
img_face_mask_a = img_face_mask_aaa[...,0:1]
|
||||
for i in range(1,10):
|
||||
a = img_face_mask_a > i / 10.0
|
||||
if len(np.argwhere(a)) == 0:
|
||||
continue
|
||||
img_face_seamless_mask_a = img_face_mask_aaa[...,0:1].copy()
|
||||
img_face_seamless_mask_a[a] = 1.0
|
||||
img_face_seamless_mask_a[img_face_seamless_mask_a <= i / 10.0] = 0.0
|
||||
break
|
||||
|
||||
try:
|
||||
#calc same bounding rect and center point as in cv2.seamlessClone to prevent jittering (not flickering)
|
||||
l,t,w,h = cv2.boundingRect( (img_face_seamless_mask_a*255).astype(np.uint8) )
|
||||
s_maskx, s_masky = int(l+w/2), int(t+h/2)
|
||||
|
||||
out_img = cv2.seamlessClone( (out_img*255).astype(np.uint8), img_bgr_uint8, (img_face_seamless_mask_a*255).astype(np.uint8), (s_maskx,s_masky) , cv2.NORMAL_CLONE )
|
||||
out_img = out_img.astype(dtype=np.float32) / 255.0
|
||||
except Exception as e:
|
||||
#seamlessClone may fail in some cases
|
||||
e_str = traceback.format_exc()
|
||||
|
||||
if 'MemoryError' in e_str:
|
||||
raise Exception("Seamless fail: " + e_str) #reraise MemoryError in order to reprocess this data by other processes
|
||||
else:
|
||||
print ("Seamless fail: " + e_str)
|
||||
|
||||
#if debug:
|
||||
# debugs += [out_img.copy()]
|
||||
|
||||
out_img = img_bgr*(1-img_face_mask_aaa) + (out_img*img_face_mask_aaa)
|
||||
|
||||
if 'seamless' in cfg.mode and cfg.color_transfer_mode != 0:
|
||||
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
|
||||
|
||||
if cfg.color_transfer_mode == 1:
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
face_mask_aaa = cv2.warpAffine( img_face_mask_aaa, face_mat, (output_size, output_size) )
|
||||
|
||||
new_out_face_bgr = imagelib.reinhard_color_transfer ( np.clip( (out_face_bgr*255).astype(np.uint8), 0, 255),
|
||||
np.clip( (dst_face_bgr*255).astype(np.uint8), 0, 255),
|
||||
source_mask=face_mask_aaa, target_mask=face_mask_aaa)
|
||||
new_out_face_bgr = np.clip( new_out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
|
||||
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( new_out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
|
||||
elif cfg.color_transfer_mode == 2:
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
new_out_face_bgr = imagelib.linear_color_transfer (out_face_bgr, dst_face_bgr)
|
||||
new_out_face_bgr = np.clip( new_out_face_bgr, 0.0, 1.0)
|
||||
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( new_out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
||||
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (new_out*img_face_mask_aaa) , 0, 1.0 )
|
||||
|
||||
if cfg.mode == 'seamless-hist-match':
|
||||
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
|
||||
new_out_face_bgr = imagelib.color_hist_match(out_face_bgr, dst_face_bgr, cfg.hist_match_threshold)
|
||||
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
||||
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (new_out*img_face_mask_aaa) , 0, 1.0 )
|
||||
|
||||
|
||||
cfg_mp = cfg.motion_blur_power / 100.0
|
||||
if cfg_mp != 0:
|
||||
k_size = int(frame_info.motion_power*cfg_mp)
|
||||
if k_size >= 1:
|
||||
k_size = np.clip (k_size+1, 2, 50)
|
||||
if cfg.super_resolution:
|
||||
k_size *= 2
|
||||
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
|
||||
new_out_face_bgr = imagelib.LinearMotionBlur (out_face_bgr, k_size , frame_info.motion_deg)
|
||||
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
||||
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (new_out*img_face_mask_aaa) , 0, 1.0 )
|
||||
|
||||
if cfg.color_degrade_power != 0:
|
||||
#if debug:
|
||||
# debugs += [out_img.copy()]
|
||||
out_img_reduced = imagelib.reduce_colors(out_img, 256)
|
||||
if cfg.color_degrade_power == 100:
|
||||
out_img = out_img_reduced
|
||||
else:
|
||||
alpha = cfg.color_degrade_power / 100.0
|
||||
out_img = (out_img*(1.0-alpha) + out_img_reduced*alpha)
|
||||
|
||||
if cfg.export_mask_alpha:
|
||||
out_img = np.concatenate ( [out_img, img_face_mask_aaa[:,:,0:1]], -1 )
|
||||
out_merging_mask = img_face_mask_aaa
|
||||
|
||||
|
||||
#if debug:
|
||||
# debugs += [out_img.copy()]
|
||||
|
||||
return out_img, out_merging_mask
|
||||
|
||||
|
||||
def ConvertMasked (cfg, frame_info):
|
||||
img_bgr_uint8 = cv2_imread(frame_info.filename)
|
||||
img_bgr_uint8 = imagelib.normalize_channels (img_bgr_uint8, 3)
|
||||
img_bgr = img_bgr_uint8.astype(np.float32) / 255.0
|
||||
|
||||
outs = []
|
||||
for face_num, img_landmarks in enumerate( frame_info.landmarks_list ):
|
||||
out_img, out_img_merging_mask = ConvertMaskedFace (cfg, frame_info, img_bgr_uint8, img_bgr, img_landmarks)
|
||||
outs += [ (out_img, out_img_merging_mask) ]
|
||||
|
||||
#Combining multiple face outputs
|
||||
final_img = None
|
||||
for img, merging_mask in outs:
|
||||
h,w,c = img.shape
|
||||
|
||||
if final_img is None:
|
||||
final_img = img
|
||||
else:
|
||||
merging_mask = merging_mask[...,0:1]
|
||||
if c == 3:
|
||||
final_img = final_img*(1-merging_mask) + img*merging_mask
|
||||
elif c == 4:
|
||||
final_img_bgr = final_img[...,0:3]*(1-merging_mask) + img[...,0:3]*merging_mask
|
||||
final_img_mask = np.clip ( final_img[...,3:4] + img[...,3:4], 0, 1 )
|
||||
final_img = np.concatenate ( [final_img_bgr, final_img_mask], -1 )
|
||||
|
||||
return (final_img*255).astype(np.uint8)
|
Loading…
Add table
Add a link
Reference in a new issue