refactoring

This commit is contained in:
Colombo 2020-01-31 14:31:26 +04:00
parent 4ed16c67f5
commit 3f813d5611
2 changed files with 258 additions and 259 deletions

View file

@ -1,5 +1,4 @@
import pickle import pickle
import types
from pathlib import Path from pathlib import Path
from core import pathex from core import pathex
from core.interact import interact as io from core.interact import interact as io
@ -108,245 +107,6 @@ def initialize_layers(nn):
nn.tf_batch_set_value (tuples) nn.tf_batch_set_value (tuples)
nn.LayerBase = LayerBase nn.LayerBase = LayerBase
class ModelBase(Saveable):
def __init__(self, *args, name=None, **kwargs):
super().__init__(name=name)
self.layers = []
self.built = False
self.args = args
self.kwargs = kwargs
self.run_placeholders = None
def _build_sub(self, layer, name):
if isinstance (layer, list):
for i,sublayer in enumerate(layer):
self._build_sub(sublayer, f"{name}_{i}")
elif isinstance (layer, LayerBase) or \
isinstance (layer, ModelBase):
if layer.name is None:
layer.name = name
if isinstance (layer, LayerBase):
with tf.variable_scope(layer.name):
layer.build_weights()
elif isinstance (layer, ModelBase):
layer.build()
self.layers.append (layer)
def xor_list(self, lst1, lst2):
return [value for value in lst1+lst2 if (value not in lst1) or (value not in lst2) ]
def build(self):
with tf.variable_scope(self.name):
current_vars = []
generator = None
while True:
if generator is None:
generator = self.on_build(*self.args, **self.kwargs)
if not isinstance(generator, types.GeneratorType):
generator = None
if generator is not None:
try:
next(generator)
except StopIteration:
generator = None
v = vars(self)
new_vars = self.xor_list (current_vars, list(v.keys()) )
for name in new_vars:
self._build_sub(v[name],name)
current_vars += new_vars
if generator is None:
break
self.built = True
#override
def get_weights(self):
if not self.built:
self.build()
weights = []
for layer in self.layers:
weights += layer.get_weights()
return weights
def get_layers(self):
if not self.built:
self.build()
layers = []
for layer in self.layers:
if isinstance (layer, LayerBase):
layers.append(layer)
else:
layers += layer.get_layers()
return layers
#override
def on_build(self, *args, **kwargs):
"""
init model layers here
return 'yield' if build is not finished
therefore dependency models will be initialized
"""
pass
#override
def forward(self, *args, **kwargs):
#flow layers/models/tensors here
pass
def __call__(self, *args, **kwargs):
if not self.built:
self.build()
return self.forward(*args, **kwargs)
def compute_output_shape(self, shapes):
if not self.built:
self.build()
not_list = False
if not isinstance(shapes, list):
not_list = True
shapes = [shapes]
with tf.device('/CPU:0'):
# CPU tensors will not impact any performance, only slightly RAM "leakage"
phs = []
for dtype,sh in shapes:
phs += [ tf.placeholder(dtype, sh) ]
result = self.__call__(phs[0] if not_list else phs)
if not isinstance(result, list):
result = [result]
result_shapes = []
for t in result:
result_shapes += [ t.shape.as_list() ]
return result_shapes[0] if not_list else result_shapes
def compute_output_channels(self, shapes):
shape = self.compute_output_shape(shapes)
shape_len = len(shape)
if shape_len == 4:
if nn.data_format == "NCHW":
return shape[1]
return shape[-1]
def build_for_run(self, shapes_list):
if not isinstance(shapes_list, list):
raise ValueError("shapes_list must be a list.")
self.run_placeholders = []
for dtype,sh in shapes_list:
self.run_placeholders.append ( tf.placeholder(dtype, sh) )
self.run_output = self.__call__(self.run_placeholders)
def run (self, inputs):
if self.run_placeholders is None:
raise Exception ("Model didn't build for run.")
if len(inputs) != len(self.run_placeholders):
raise ValueError("len(inputs) != self.run_placeholders")
feed_dict = {}
for ph, inp in zip(self.run_placeholders, inputs):
feed_dict[ph] = inp
return nn.tf_sess.run ( self.run_output, feed_dict=feed_dict)
def summary(self):
layers = self.get_layers()
layers_names = []
layers_params = []
max_len_str = 0
max_len_param_str = 0
delim_str = "-"
total_params = 0
#Get layers names and str lenght for delim
for l in layers:
if len(str(l))>max_len_str:
max_len_str = len(str(l))
layers_names+=[str(l).capitalize()]
#Get params for each layer
layers_params = [ int(np.sum(np.prod(w.shape) for w in l.get_weights())) for l in layers ]
total_params = np.sum(layers_params)
#Get str lenght for delim
for p in layers_params:
if len(str(p))>max_len_param_str:
max_len_param_str=len(str(p))
#Set delim
for i in range(max_len_str+max_len_param_str+3):
delim_str += "-"
output = "\n"+delim_str+"\n"
#Format model name str
model_name_str = "| "+self.name.capitalize()
len_model_name_str = len(model_name_str)
for i in range(len(delim_str)-len_model_name_str):
model_name_str+= " " if i!=(len(delim_str)-len_model_name_str-2) else " |"
output += model_name_str +"\n"
output += delim_str +"\n"
#Format layers table
for i in range(len(layers_names)):
output += delim_str +"\n"
l_name = layers_names[i]
l_param = str(layers_params[i])
l_param_str = ""
if len(l_name)<=max_len_str:
for i in range(max_len_str - len(l_name)):
l_name+= " "
if len(l_param)<=max_len_param_str:
for i in range(max_len_param_str - len(l_param)):
l_param_str+= " "
l_param_str += l_param
output +="| "+l_name+"|"+l_param_str+"| \n"
output += delim_str +"\n"
#Format sum of params
total_params_str = "| Total params count: "+str(total_params)
len_total_params_str = len(total_params_str)
for i in range(len(delim_str)-len_total_params_str):
total_params_str+= " " if i!=(len(delim_str)-len_total_params_str-2) else " |"
output += total_params_str +"\n"
output += delim_str +"\n"
io.log_info(output)
nn.ModelBase = ModelBase
class Conv2D(LayerBase): class Conv2D(LayerBase):
""" """
use_wscale bool enables equalized learning rate, kernel_initializer will be forced to random_normal use_wscale bool enables equalized learning rate, kernel_initializer will be forced to random_normal

View file

@ -1,12 +1,251 @@
import types
def initialize_models(nn): def initialize_models(nn):
tf = nn.tf tf = nn.tf
class ModelBase(nn.Saveable):
def __init__(self, *args, name=None, **kwargs):
super().__init__(name=name)
self.layers = []
self.built = False
self.args = args
self.kwargs = kwargs
self.run_placeholders = None
def _build_sub(self, layer, name):
if isinstance (layer, list):
for i,sublayer in enumerate(layer):
self._build_sub(sublayer, f"{name}_{i}")
elif isinstance (layer, nn.LayerBase) or \
isinstance (layer, ModelBase):
if layer.name is None:
layer.name = name
if isinstance (layer, nn.LayerBase):
with tf.variable_scope(layer.name):
layer.build_weights()
elif isinstance (layer, ModelBase):
layer.build()
self.layers.append (layer)
def xor_list(self, lst1, lst2):
return [value for value in lst1+lst2 if (value not in lst1) or (value not in lst2) ]
def build(self):
with tf.variable_scope(self.name):
current_vars = []
generator = None
while True:
if generator is None:
generator = self.on_build(*self.args, **self.kwargs)
if not isinstance(generator, types.GeneratorType):
generator = None
if generator is not None:
try:
next(generator)
except StopIteration:
generator = None
v = vars(self)
new_vars = self.xor_list (current_vars, list(v.keys()) )
for name in new_vars:
self._build_sub(v[name],name)
current_vars += new_vars
if generator is None:
break
self.built = True
#override
def get_weights(self):
if not self.built:
self.build()
weights = []
for layer in self.layers:
weights += layer.get_weights()
return weights
def get_layers(self):
if not self.built:
self.build()
layers = []
for layer in self.layers:
if isinstance (layer, nn.LayerBase):
layers.append(layer)
else:
layers += layer.get_layers()
return layers
#override
def on_build(self, *args, **kwargs):
"""
init model layers here
return 'yield' if build is not finished
therefore dependency models will be initialized
"""
pass
#override
def forward(self, *args, **kwargs):
#flow layers/models/tensors here
pass
def __call__(self, *args, **kwargs):
if not self.built:
self.build()
return self.forward(*args, **kwargs)
def compute_output_shape(self, shapes):
if not self.built:
self.build()
not_list = False
if not isinstance(shapes, list):
not_list = True
shapes = [shapes]
with tf.device('/CPU:0'):
# CPU tensors will not impact any performance, only slightly RAM "leakage"
phs = []
for dtype,sh in shapes:
phs += [ tf.placeholder(dtype, sh) ]
result = self.__call__(phs[0] if not_list else phs)
if not isinstance(result, list):
result = [result]
result_shapes = []
for t in result:
result_shapes += [ t.shape.as_list() ]
return result_shapes[0] if not_list else result_shapes
def compute_output_channels(self, shapes):
shape = self.compute_output_shape(shapes)
shape_len = len(shape)
if shape_len == 4:
if nn.data_format == "NCHW":
return shape[1]
return shape[-1]
def build_for_run(self, shapes_list):
if not isinstance(shapes_list, list):
raise ValueError("shapes_list must be a list.")
self.run_placeholders = []
for dtype,sh in shapes_list:
self.run_placeholders.append ( tf.placeholder(dtype, sh) )
self.run_output = self.__call__(self.run_placeholders)
def run (self, inputs):
if self.run_placeholders is None:
raise Exception ("Model didn't build for run.")
if len(inputs) != len(self.run_placeholders):
raise ValueError("len(inputs) != self.run_placeholders")
feed_dict = {}
for ph, inp in zip(self.run_placeholders, inputs):
feed_dict[ph] = inp
return nn.tf_sess.run ( self.run_output, feed_dict=feed_dict)
def summary(self):
layers = self.get_layers()
layers_names = []
layers_params = []
max_len_str = 0
max_len_param_str = 0
delim_str = "-"
total_params = 0
#Get layers names and str lenght for delim
for l in layers:
if len(str(l))>max_len_str:
max_len_str = len(str(l))
layers_names+=[str(l).capitalize()]
#Get params for each layer
layers_params = [ int(np.sum(np.prod(w.shape) for w in l.get_weights())) for l in layers ]
total_params = np.sum(layers_params)
#Get str lenght for delim
for p in layers_params:
if len(str(p))>max_len_param_str:
max_len_param_str=len(str(p))
#Set delim
for i in range(max_len_str+max_len_param_str+3):
delim_str += "-"
output = "\n"+delim_str+"\n"
#Format model name str
model_name_str = "| "+self.name.capitalize()
len_model_name_str = len(model_name_str)
for i in range(len(delim_str)-len_model_name_str):
model_name_str+= " " if i!=(len(delim_str)-len_model_name_str-2) else " |"
output += model_name_str +"\n"
output += delim_str +"\n"
#Format layers table
for i in range(len(layers_names)):
output += delim_str +"\n"
l_name = layers_names[i]
l_param = str(layers_params[i])
l_param_str = ""
if len(l_name)<=max_len_str:
for i in range(max_len_str - len(l_name)):
l_name+= " "
if len(l_param)<=max_len_param_str:
for i in range(max_len_param_str - len(l_param)):
l_param_str+= " "
l_param_str += l_param
output +="| "+l_name+"|"+l_param_str+"| \n"
output += delim_str +"\n"
#Format sum of params
total_params_str = "| Total params count: "+str(total_params)
len_total_params_str = len(total_params_str)
for i in range(len(delim_str)-len_total_params_str):
total_params_str+= " " if i!=(len(delim_str)-len_total_params_str-2) else " |"
output += total_params_str +"\n"
output += delim_str +"\n"
io.log_info(output)
nn.ModelBase = ModelBase
class PatchDiscriminator(nn.ModelBase): class PatchDiscriminator(nn.ModelBase):
def on_build(self, patch_size, in_ch, base_ch=256, kernel_initializer=None): def on_build(self, patch_size, in_ch, base_ch=256, kernel_initializer=None):
prev_ch = in_ch prev_ch = in_ch
self.convs = [] self.convs = []
for i, (kernel_size, strides) in enumerate(patch_discriminator_kernels[patch_size]): for i, (kernel_size, strides) in enumerate(patch_discriminator_kernels[patch_size]):
cur_ch = base_ch * min( (2**i), 8 ) cur_ch = base_ch * min( (2**i), 8 )
self.convs.append ( nn.Conv2D( prev_ch, cur_ch, kernel_size=kernel_size, strides=strides, padding='SAME', kernel_initializer=kernel_initializer) ) self.convs.append ( nn.Conv2D( prev_ch, cur_ch, kernel_size=kernel_size, strides=strides, padding='SAME', kernel_initializer=kernel_initializer) )
@ -18,24 +257,24 @@ def initialize_models(nn):
for conv in self.convs: for conv in self.convs:
x = tf.nn.leaky_relu( conv(x), 0.1 ) x = tf.nn.leaky_relu( conv(x), 0.1 )
return self.out_conv(x) return self.out_conv(x)
nn.PatchDiscriminator = PatchDiscriminator nn.PatchDiscriminator = PatchDiscriminator
patch_discriminator_kernels = \ patch_discriminator_kernels = \
{ 1 : [ [1,1] ], { 1 : [ [1,1] ],
2 : [ [2,1] ], 2 : [ [2,1] ],
3 : [ [2,1], [2,1] ], 3 : [ [2,1], [2,1] ],
4 : [ [2,2], [2,2] ], 4 : [ [2,2], [2,2] ],
5 : [ [3,2], [2,2] ], 5 : [ [3,2], [2,2] ],
6 : [ [4,2], [2,2] ], 6 : [ [4,2], [2,2] ],
7 : [ [3,2], [3,2] ], 7 : [ [3,2], [3,2] ],
8 : [ [4,2], [3,2] ], 8 : [ [4,2], [3,2] ],
9 : [ [3,2], [4,2] ], 9 : [ [3,2], [4,2] ],
10 : [ [4,2], [4,2] ], 10 : [ [4,2], [4,2] ],
11 : [ [3,2], [3,2], [2,1] ], 11 : [ [3,2], [3,2], [2,1] ],
12 : [ [4,2], [3,2], [2,1] ], 12 : [ [4,2], [3,2], [2,1] ],
13 : [ [3,2], [4,2], [2,1] ], 13 : [ [3,2], [4,2], [2,1] ],
14 : [ [4,2], [4,2], [2,1] ], 14 : [ [4,2], [4,2], [2,1] ],
15 : [ [3,2], [3,2], [3,1] ], 15 : [ [3,2], [3,2], [3,1] ],
16 : [ [4,2], [3,2], [3,1] ] } 16 : [ [4,2], [3,2], [3,1] ] }