mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
rename samples to samplelib
This commit is contained in:
parent
773e8d80e0
commit
3cf3bb786e
14 changed files with 9 additions and 15 deletions
218
samplelib/SampleProcessor.py
Normal file
218
samplelib/SampleProcessor.py
Normal file
|
@ -0,0 +1,218 @@
|
|||
from enum import IntEnum
|
||||
import numpy as np
|
||||
import cv2
|
||||
import imagelib
|
||||
from facelib import LandmarksProcessor
|
||||
from facelib import FaceType
|
||||
|
||||
|
||||
class SampleProcessor(object):
|
||||
class TypeFlags(IntEnum):
|
||||
SOURCE = 0x00000001,
|
||||
WARPED = 0x00000002,
|
||||
WARPED_TRANSFORMED = 0x00000004,
|
||||
TRANSFORMED = 0x00000008,
|
||||
LANDMARKS_ARRAY = 0x00000010, #currently unused
|
||||
|
||||
RANDOM_CLOSE = 0x00000020,
|
||||
MORPH_TO_RANDOM_CLOSE = 0x00000040,
|
||||
|
||||
FACE_ALIGN_HALF = 0x00000100,
|
||||
FACE_ALIGN_FULL = 0x00000200,
|
||||
FACE_ALIGN_HEAD = 0x00000400,
|
||||
FACE_ALIGN_AVATAR = 0x00000800,
|
||||
|
||||
FACE_MASK_FULL = 0x00001000,
|
||||
FACE_MASK_EYES = 0x00002000,
|
||||
|
||||
MODE_BGR = 0x01000000, #BGR
|
||||
MODE_G = 0x02000000, #Grayscale
|
||||
MODE_GGG = 0x04000000, #3xGrayscale
|
||||
MODE_M = 0x08000000, #mask only
|
||||
MODE_BGR_SHUFFLE = 0x10000000, #BGR shuffle
|
||||
|
||||
class Options(object):
|
||||
def __init__(self, random_flip = True, normalize_tanh = False, rotation_range=[-10,10], scale_range=[-0.05, 0.05], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05]):
|
||||
self.random_flip = random_flip
|
||||
self.normalize_tanh = normalize_tanh
|
||||
self.rotation_range = rotation_range
|
||||
self.scale_range = scale_range
|
||||
self.tx_range = tx_range
|
||||
self.ty_range = ty_range
|
||||
|
||||
@staticmethod
|
||||
def process (sample, sample_process_options, output_sample_types, debug):
|
||||
sample_bgr = sample.load_bgr()
|
||||
h,w,c = sample_bgr.shape
|
||||
|
||||
is_face_sample = sample.landmarks is not None
|
||||
|
||||
if debug and is_face_sample:
|
||||
LandmarksProcessor.draw_landmarks (sample_bgr, sample.landmarks, (0, 1, 0))
|
||||
|
||||
close_sample = sample.close_target_list[ np.random.randint(0, len(sample.close_target_list)) ] if sample.close_target_list is not None else None
|
||||
close_sample_bgr = close_sample.load_bgr() if close_sample is not None else None
|
||||
|
||||
if debug and close_sample_bgr is not None:
|
||||
LandmarksProcessor.draw_landmarks (close_sample_bgr, close_sample.landmarks, (0, 1, 0))
|
||||
|
||||
params = imagelib.gen_warp_params(sample_bgr, sample_process_options.random_flip, rotation_range=sample_process_options.rotation_range, scale_range=sample_process_options.scale_range, tx_range=sample_process_options.tx_range, ty_range=sample_process_options.ty_range )
|
||||
|
||||
images = [[None]*3 for _ in range(30)]
|
||||
|
||||
sample_rnd_seed = np.random.randint(0x80000000)
|
||||
|
||||
outputs = []
|
||||
for sample_type in output_sample_types:
|
||||
f = sample_type[0]
|
||||
size = sample_type[1]
|
||||
random_sub_size = 0 if len (sample_type) < 3 else min( sample_type[2] , size)
|
||||
|
||||
if f & SampleProcessor.TypeFlags.SOURCE != 0:
|
||||
img_type = 0
|
||||
elif f & SampleProcessor.TypeFlags.WARPED != 0:
|
||||
img_type = 1
|
||||
elif f & SampleProcessor.TypeFlags.WARPED_TRANSFORMED != 0:
|
||||
img_type = 2
|
||||
elif f & SampleProcessor.TypeFlags.TRANSFORMED != 0:
|
||||
img_type = 3
|
||||
elif f & SampleProcessor.TypeFlags.LANDMARKS_ARRAY != 0:
|
||||
img_type = 4
|
||||
else:
|
||||
raise ValueError ('expected SampleTypeFlags type')
|
||||
|
||||
if f & SampleProcessor.TypeFlags.RANDOM_CLOSE != 0:
|
||||
img_type += 10
|
||||
elif f & SampleProcessor.TypeFlags.MORPH_TO_RANDOM_CLOSE != 0:
|
||||
img_type += 20
|
||||
|
||||
face_mask_type = 0
|
||||
if f & SampleProcessor.TypeFlags.FACE_MASK_FULL != 0:
|
||||
face_mask_type = 1
|
||||
elif f & SampleProcessor.TypeFlags.FACE_MASK_EYES != 0:
|
||||
face_mask_type = 2
|
||||
|
||||
target_face_type = -1
|
||||
if f & SampleProcessor.TypeFlags.FACE_ALIGN_HALF != 0:
|
||||
target_face_type = FaceType.HALF
|
||||
elif f & SampleProcessor.TypeFlags.FACE_ALIGN_FULL != 0:
|
||||
target_face_type = FaceType.FULL
|
||||
elif f & SampleProcessor.TypeFlags.FACE_ALIGN_HEAD != 0:
|
||||
target_face_type = FaceType.HEAD
|
||||
elif f & SampleProcessor.TypeFlags.FACE_ALIGN_AVATAR != 0:
|
||||
target_face_type = FaceType.AVATAR
|
||||
|
||||
if img_type == 4:
|
||||
l = sample.landmarks
|
||||
l = np.concatenate ( [ np.expand_dims(l[:,0] / w,-1), np.expand_dims(l[:,1] / h,-1) ], -1 )
|
||||
l = np.clip(l, 0.0, 1.0)
|
||||
img = l
|
||||
else:
|
||||
if images[img_type][face_mask_type] is None:
|
||||
if img_type >= 10 and img_type <= 19: #RANDOM_CLOSE
|
||||
img_type -= 10
|
||||
img = close_sample_bgr
|
||||
cur_sample = close_sample
|
||||
|
||||
elif img_type >= 20 and img_type <= 29: #MORPH_TO_RANDOM_CLOSE
|
||||
img_type -= 20
|
||||
res = sample.shape[0]
|
||||
|
||||
s_landmarks = sample.landmarks.copy()
|
||||
d_landmarks = close_sample.landmarks.copy()
|
||||
idxs = list(range(len(s_landmarks)))
|
||||
#remove landmarks near boundaries
|
||||
for i in idxs[:]:
|
||||
s_l = s_landmarks[i]
|
||||
d_l = d_landmarks[i]
|
||||
if s_l[0] < 5 or s_l[1] < 5 or s_l[0] >= res-5 or s_l[1] >= res-5 or \
|
||||
d_l[0] < 5 or d_l[1] < 5 or d_l[0] >= res-5 or d_l[1] >= res-5:
|
||||
idxs.remove(i)
|
||||
#remove landmarks that close to each other in 5 dist
|
||||
for landmarks in [s_landmarks, d_landmarks]:
|
||||
for i in idxs[:]:
|
||||
s_l = landmarks[i]
|
||||
for j in idxs[:]:
|
||||
if i == j:
|
||||
continue
|
||||
s_l_2 = landmarks[j]
|
||||
diff_l = np.abs(s_l - s_l_2)
|
||||
if np.sqrt(diff_l.dot(diff_l)) < 5:
|
||||
idxs.remove(i)
|
||||
break
|
||||
s_landmarks = s_landmarks[idxs]
|
||||
d_landmarks = d_landmarks[idxs]
|
||||
s_landmarks = np.concatenate ( [s_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
|
||||
d_landmarks = np.concatenate ( [d_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
|
||||
img = imagelib.morph_by_points (sample_bgr, s_landmarks, d_landmarks)
|
||||
cur_sample = close_sample
|
||||
else:
|
||||
img = sample_bgr
|
||||
cur_sample = sample
|
||||
|
||||
if is_face_sample:
|
||||
if face_mask_type == 1:
|
||||
img = np.concatenate( (img, LandmarksProcessor.get_image_hull_mask (img.shape, cur_sample.landmarks) ), -1 )
|
||||
elif face_mask_type == 2:
|
||||
mask = LandmarksProcessor.get_image_eye_mask (img.shape, cur_sample.landmarks)
|
||||
mask = np.expand_dims (cv2.blur (mask, ( w // 32, w // 32 ) ), -1)
|
||||
mask[mask > 0.0] = 1.0
|
||||
img = np.concatenate( (img, mask ), -1 )
|
||||
|
||||
images[img_type][face_mask_type] = imagelib.warp_by_params (params, img, (img_type==1 or img_type==2), (img_type==2 or img_type==3), img_type != 0, face_mask_type == 0)
|
||||
|
||||
img = images[img_type][face_mask_type]
|
||||
|
||||
if is_face_sample and target_face_type != -1:
|
||||
if target_face_type > sample.face_type:
|
||||
raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, target_face_type) )
|
||||
img = cv2.warpAffine( img, LandmarksProcessor.get_transform_mat (sample.landmarks, size, target_face_type), (size,size), flags=cv2.INTER_CUBIC )
|
||||
else:
|
||||
img = cv2.resize( img, (size,size), cv2.INTER_CUBIC )
|
||||
|
||||
if random_sub_size != 0:
|
||||
sub_size = size - random_sub_size
|
||||
rnd_state = np.random.RandomState (sample_rnd_seed+random_sub_size)
|
||||
start_x = rnd_state.randint(sub_size+1)
|
||||
start_y = rnd_state.randint(sub_size+1)
|
||||
img = img[start_y:start_y+sub_size,start_x:start_x+sub_size,:]
|
||||
|
||||
img_bgr = img[...,0:3]
|
||||
img_mask = img[...,3:4]
|
||||
|
||||
if f & SampleProcessor.TypeFlags.MODE_BGR != 0:
|
||||
img = img
|
||||
elif f & SampleProcessor.TypeFlags.MODE_BGR_SHUFFLE != 0:
|
||||
img_bgr = np.take (img_bgr, np.random.permutation(img_bgr.shape[-1]), axis=-1)
|
||||
img = np.concatenate ( (img_bgr,img_mask) , -1 )
|
||||
elif f & SampleProcessor.TypeFlags.MODE_G != 0:
|
||||
img = np.concatenate ( (np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1),img_mask) , -1 )
|
||||
elif f & SampleProcessor.TypeFlags.MODE_GGG != 0:
|
||||
img = np.concatenate ( ( np.repeat ( np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1), (3,), -1), img_mask), -1)
|
||||
elif is_face_sample and f & SampleProcessor.TypeFlags.MODE_M != 0:
|
||||
if face_mask_type== 0:
|
||||
raise ValueError ('no face_mask_type defined')
|
||||
img = img_mask
|
||||
else:
|
||||
raise ValueError ('expected SampleTypeFlags mode')
|
||||
|
||||
if not debug:
|
||||
if sample_process_options.normalize_tanh:
|
||||
img = np.clip (img * 2.0 - 1.0, -1.0, 1.0)
|
||||
else:
|
||||
img = np.clip (img, 0.0, 1.0)
|
||||
|
||||
outputs.append ( img )
|
||||
|
||||
if debug:
|
||||
result = []
|
||||
|
||||
for output in outputs:
|
||||
if output.shape[2] < 4:
|
||||
result += [output,]
|
||||
elif output.shape[2] == 4:
|
||||
result += [output[...,0:3]*output[...,3:4],]
|
||||
|
||||
return result
|
||||
else:
|
||||
return outputs
|
Loading…
Add table
Add a link
Reference in a new issue