rename samples to samplelib

This commit is contained in:
iperov 2019-03-27 10:44:13 +04:00
parent 773e8d80e0
commit 3cf3bb786e
14 changed files with 9 additions and 15 deletions

View file

@ -0,0 +1,77 @@
import traceback
import numpy as np
import cv2
from utils import iter_utils
from samplelib import SampleType, SampleProcessor, SampleLoader, SampleGeneratorBase
'''
output_sample_types = [
[SampleProcessor.TypeFlags, size, (optional)random_sub_size] ,
...
]
'''
class SampleGeneratorImageTemporal(SampleGeneratorBase):
def __init__ (self, samples_path, debug, batch_size, temporal_image_count, sample_process_options=SampleProcessor.Options(), output_sample_types=[], **kwargs):
super().__init__(samples_path, debug, batch_size)
self.temporal_image_count = temporal_image_count
self.sample_process_options = sample_process_options
self.output_sample_types = output_sample_types
self.samples = SampleLoader.load (SampleType.IMAGE, self.samples_path)
self.generator_samples = [ self.samples ]
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, 0 )] if self.debug else \
[iter_utils.SubprocessGenerator ( self.batch_func, 0 )]
self.generator_counter = -1
def __iter__(self):
return self
def __next__(self):
self.generator_counter += 1
generator = self.generators[self.generator_counter % len(self.generators) ]
return next(generator)
def batch_func(self, generator_id):
samples = self.generator_samples[generator_id]
samples_len = len(samples)
if samples_len == 0:
raise ValueError('No training data provided.')
if samples_len - self.temporal_image_count < 0:
raise ValueError('Not enough samples to fit temporal line.')
shuffle_idxs = []
samples_sub_len = samples_len - self.temporal_image_count + 1
while True:
batches = None
for n_batch in range(self.batch_size):
if len(shuffle_idxs) == 0:
shuffle_idxs = [ *range(samples_sub_len) ]
np.random.shuffle (shuffle_idxs)
idx = shuffle_idxs.pop()
temporal_samples = []
for i in range( self.temporal_image_count ):
sample = samples[ idx+i ]
try:
temporal_samples += SampleProcessor.process (sample, self.sample_process_options, self.output_sample_types, self.debug)
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
if batches is None:
batches = [ [] for _ in range(len(temporal_samples)) ]
for i in range(len(temporal_samples)):
batches[i].append ( temporal_samples[i] )
yield [ np.array(batch) for batch in batches]