Merge branch 'iperov-master' into build/commits-from-upstream

# Conflicts:
#	models/ModelBase.py
#	utils/Path_utils.py
This commit is contained in:
jh 2019-08-20 17:13:29 -07:00
commit 3bb7a8ff5d
5 changed files with 212 additions and 172 deletions

View file

@ -32,6 +32,8 @@ GOAL: next DeepFacelab update.
- ### Communication groups:
[mrdeepfakes (English)](https://mrdeepfakes.com/forums/) - the biggest SFW and NSFW community
(Chinese) QQ group 951138799 for ML/AI experts
[deepfakes (Chinese)](https://deepfakescn.com)

View file

@ -33,6 +33,7 @@ class InteractBase(object):
self.key_events = {}
self.pg_bar = None
self.focus_wnd_name = None
self.error_log_line_prefix = '/!\\ '
def is_support_windows(self):
return False
@ -65,10 +66,22 @@ class InteractBase(object):
raise NotImplemented
def log_info(self, msg, end='\n'):
if self.pg_bar is not None:
try: # Attempt print before the pb
tqdm.write(msg)
return
except:
pass #Fallback to normal print upon failure
print (msg, end=end)
def log_err(self, msg, end='\n'):
print (msg, end=end)
if self.pg_bar is not None:
try: # Attempt print before the pb
tqdm.write(f'{self.error_log_line_prefix}{msg}')
return
except:
pass #Fallback to normal print upon failure
print (f'{self.error_log_line_prefix}{msg}', end=end)
def named_window(self, wnd_name):
if wnd_name not in self.named_windows:
@ -150,9 +163,12 @@ class InteractBase(object):
else: print("progress_bar not set.")
def progress_bar_generator(self, data, desc, leave=True):
for x in tqdm( data, desc=desc, leave=leave, ascii=True ):
self.pg_bar = tqdm( data, desc=desc, leave=leave, ascii=True )
for x in self.pg_bar:
yield x
self.pg_bar.close()
self.pg_bar = None
def process_messages(self, sleep_time=0):
self.on_process_messages(sleep_time)

View file

@ -12,7 +12,7 @@ import cv2
import models
from interact import interact as io
def trainerThread (s2c, c2s, args, device_args):
def trainerThread (s2c, c2s, e, args, device_args):
while True:
try:
start_time = time.time()
@ -66,6 +66,7 @@ def trainerThread (s2c, c2s, args, device_args):
else:
previews = [( 'debug, press update for new', model.debug_one_iter())]
c2s.put ( {'op':'show', 'previews': previews} )
e.set() #Set the GUI Thread as Ready
if model.is_first_run():
@ -190,9 +191,12 @@ def main(args, device_args):
s2c = queue.Queue()
c2s = queue.Queue()
thread = threading.Thread(target=trainerThread, args=(s2c, c2s, args, device_args) )
e = threading.Event()
thread = threading.Thread(target=trainerThread, args=(s2c, c2s, e, args, device_args) )
thread.start()
e.wait() #Wait for inital load to occur.
if no_preview:
while True:
if not c2s.empty():
@ -294,7 +298,7 @@ def main(args, device_args):
key_events = io.get_key_events(wnd_name)
key, chr_key, ctrl_pressed, alt_pressed, shift_pressed = key_events[-1] if len(key_events) > 0 else (0,0,False,False,False)
if key == ord('\n') or key == ord('\r'):
s2c.put ( {'op': 'close'} )
elif key == ord('s'):
@ -324,4 +328,4 @@ def main(args, device_args):
except KeyboardInterrupt:
s2c.put ( {'op': 'close'} )
io.destroy_all_windows()
io.destroy_all_windows()

View file

@ -26,22 +26,22 @@ class ModelBase(object):
def __init__(self, model_path, training_data_src_path=None, training_data_dst_path=None, pretraining_data_path=None, debug = False, device_args = None,
ask_enable_autobackup=True,
ask_write_preview_history=True,
ask_target_iter=True,
ask_batch_size=True,
ask_write_preview_history=True,
ask_target_iter=True,
ask_batch_size=True,
ask_sort_by_yaw=True,
ask_random_flip=True,
ask_random_flip=True,
ask_src_scale_mod=True):
device_args['force_gpu_idx'] = device_args.get('force_gpu_idx', -1)
device_args['cpu_only'] = device_args.get('cpu_only', False)
device_args['force_gpu_idx'] = device_args.get('force_gpu_idx',-1)
device_args['cpu_only'] = device_args.get('cpu_only',False)
if device_args['force_gpu_idx'] == -1 and not device_args['cpu_only']:
idxs_names_list = nnlib.device.getValidDevicesIdxsWithNamesList()
if len(idxs_names_list) > 1:
io.log_info("You have multi GPUs in a system: ")
io.log_info ("You have multi GPUs in a system: ")
for idx, name in idxs_names_list:
io.log_info("[%d] : %s" % (idx, name))
io.log_info ("[%d] : %s" % (idx, name) )
device_args['force_gpu_idx'] = io.input_int("Which GPU idx to choose? ( skip: best GPU ) : ", -1,
[x[0] for x in idxs_names_list])
@ -49,15 +49,15 @@ class ModelBase(object):
self.device_config = nnlib.DeviceConfig(allow_growth=True, **self.device_args)
io.log_info("Loading model...")
io.log_info ("Loading model...")
self.model_path = model_path
self.model_data_path = Path(self.get_strpath_storage_for_file('data.dat'))
self.model_data_path = Path( self.get_strpath_storage_for_file('data.dat') )
self.training_data_src_path = training_data_src_path
self.training_data_dst_path = training_data_dst_path
self.pretraining_data_path = pretraining_data_path
self.src_images_paths = None
self.dst_images_paths = None
self.src_yaw_images_paths = None
@ -76,8 +76,8 @@ class ModelBase(object):
model_data = {}
if self.model_data_path.exists():
model_data = pickle.loads(self.model_data_path.read_bytes())
self.iter = max(model_data.get('iter', 0), model_data.get('epoch', 0))
model_data = pickle.loads ( self.model_data_path.read_bytes() )
self.iter = max( model_data.get('iter',0), model_data.get('epoch',0) )
if 'epoch' in self.options:
self.options.pop('epoch')
if self.iter != 0:
@ -89,13 +89,13 @@ class ModelBase(object):
" override model settings.",
5 if io.is_colab() else 2)
yn_str = {True: 'y', False: 'n'}
yn_str = {True:'y',False:'n'}
if self.iter == 0:
io.log_info("\nModel first run. Enter model options as default for each run.")
io.log_info ("\nModel first run. Enter model options as default for each run.")
if ask_enable_autobackup and (self.iter == 0 or ask_override):
default_autobackup = False if self.iter == 0 else self.options.get('autobackup', False)
default_autobackup = False if self.iter == 0 else self.options.get('autobackup',False)
self.options['autobackup'] = io.input_bool("Enable autobackup? (y/n ?:help skip:%s) : " %
(yn_str[default_autobackup]), default_autobackup,
help_message="Autobackup model files with preview every hour for"
@ -128,17 +128,17 @@ class ModelBase(object):
" new person")
else:
choose_preview_history = False
if ask_target_iter:
if (self.iter == 0 or ask_override):
self.options['target_iter'] = max(0, io.input_int("Target iteration (skip:unlimited/default) : ", 0))
else:
self.options['target_iter'] = max(model_data.get('target_iter', 0), self.options.get('target_epoch', 0))
self.options['target_iter'] = max(model_data.get('target_iter',0), self.options.get('target_epoch',0))
if 'target_epoch' in self.options:
self.options.pop('target_epoch')
if ask_batch_size and (self.iter == 0 or ask_override):
default_batch_size = 0 if self.iter == 0 else self.options.get('batch_size', 0)
default_batch_size = 0 if self.iter == 0 else self.options.get('batch_size',0)
self.options['batch_cap'] = max(0, io.input_int("Batch_size (?:help skip:%d) : " % self.options.get('batch_cap', 16),self.options.get('batch_cap', 16),
help_message="Larger batch size is better for NN's"
" generalization, but it can cause Out of"
@ -157,7 +157,7 @@ class ModelBase(object):
self.options['ping_pong'] = self.options.get('ping_pong', False)
self.options['ping_pong_iter'] = self.options.get('ping_pong_iter',1000)
if ask_sort_by_yaw:
if ask_sort_by_yaw:
if (self.iter == 0 or ask_override):
default_sort_by_yaw = self.options.get('sort_by_yaw', False)
self.options['sort_by_yaw'] = io.input_bool("Feed faces to network sorted by yaw? (y/n ?:help skip:%s):"
@ -182,7 +182,7 @@ class ModelBase(object):
" get a better result."), -30, 30)
else:
self.options['src_scale_mod'] = self.options.get('src_scale_mod', 0)
self.autobackup = self.options.get('autobackup', False)
if not self.autobackup and 'autobackup' in self.options:
self.options.pop('autobackup')
@ -191,20 +191,20 @@ class ModelBase(object):
if not self.write_preview_history and 'write_preview_history' in self.options:
self.options.pop('write_preview_history')
self.target_iter = self.options.get('target_iter', 0)
self.target_iter = self.options.get('target_iter',0)
if self.target_iter == 0 and 'target_iter' in self.options:
self.options.pop('target_iter')
self.batch_size = self.options.get('batch_size', 8)
self.batch_cap = self.options.get('batch_cap',16)
self.ping_pong_iter = self.options.get('ping_pong_iter',1000)
self.sort_by_yaw = self.options.get('sort_by_yaw', False)
self.random_flip = self.options.get('random_flip', True)
self.sort_by_yaw = self.options.get('sort_by_yaw',False)
self.random_flip = self.options.get('random_flip',True)
if self.batch_cap == 0:
self.options['batch_cap'] = self.batch_size
self.batch_cap = self.options.get('batch_cap',16)
self.src_scale_mod = self.options.get('src_scale_mod', 0)
self.src_scale_mod = self.options.get('src_scale_mod',0)
if self.src_scale_mod == 0 and 'src_scale_mod' in self.options:
self.options.pop('src_scale_mod')
@ -224,17 +224,17 @@ class ModelBase(object):
if self.is_training_mode:
if self.device_args['force_gpu_idx'] == -1:
self.preview_history_path = self.model_path / ('%s_history' % (self.get_model_name()))
self.autobackups_path = self.model_path / ('%s_autobackups' % (self.get_model_name()))
self.preview_history_path = self.model_path / ( '%s_history' % (self.get_model_name()) )
self.autobackups_path = self.model_path / ( '%s_autobackups' % (self.get_model_name()) )
else:
self.preview_history_path = self.model_path / ('%d_%s_history' % (self.device_args['force_gpu_idx'],
self.get_model_name()))
self.autobackups_path = self.model_path / ('%d_%s_autobackups' % (self.device_args['force_gpu_idx'],
self.get_model_name()))
if self.autobackup:
self.autobackup_current_hour = time.localtime().tm_hour
if not self.autobackups_path.exists():
self.autobackups_path.mkdir(exist_ok=True)
@ -247,13 +247,13 @@ class ModelBase(object):
Path(filename).unlink()
if self.generator_list is None:
raise ValueError('You didnt set_training_data_generators()')
raise ValueError( 'You didnt set_training_data_generators()')
else:
for i, generator in enumerate(self.generator_list):
if not isinstance(generator, SampleGeneratorBase):
raise ValueError('training data generator is not subclass of SampleGeneratorBase')
if self.sample_for_preview is None or choose_preview_history:
if self.sample_for_preview is None or choose_preview_history:
if choose_preview_history and io.is_support_windows():
wnd_name = "[p] - next. [enter] - confirm."
io.named_window(wnd_name)
@ -262,7 +262,7 @@ class ModelBase(object):
while not choosed:
self.sample_for_preview = self.generate_next_sample()
preview = self.get_static_preview()
io.show_image(wnd_name, (preview * 255).astype(np.uint8))
io.show_image( wnd_name, (preview*255).astype(np.uint8) )
while True:
key_events = io.get_key_events(wnd_name)
@ -273,54 +273,72 @@ class ModelBase(object):
break
elif key == ord('p'):
break
try:
io.process_messages(0.1)
except KeyboardInterrupt:
choosed = True
io.destroy_window(wnd_name)
else:
self.sample_for_preview = self.generate_next_sample()
else:
self.sample_for_preview = self.generate_next_sample()
self.last_sample = self.sample_for_preview
###Generate text summary of model hyperparameters
#Find the longest key name and value string. Used as column widths.
width_name = max([len(k) for k in self.options.keys()] + [17]) + 1 # Single space buffer to left edge. Minimum of 17, the length of the longest static string used "Current iteration"
width_value = max([len(str(x)) for x in self.options.values()] + [len(str(self.iter)), len(self.get_model_name())]) + 1 # Single space buffer to right edge
if not self.device_config.cpu_only: #Check length of GPU names
width_value = max([len(nnlib.device.getDeviceName(idx))+1 for idx in self.device_config.gpu_idxs] + [width_value])
width_total = width_name + width_value + 2 #Plus 2 for ": "
model_summary_text = []
model_summary_text += ["===== Model summary ====="]
model_summary_text += ["== Model name: " + self.get_model_name()]
model_summary_text += ["=="]
model_summary_text += ["== Current iteration: " + str(self.iter)]
model_summary_text += ["=="]
model_summary_text += ["== Model options:"]
model_summary_text += [f'=={" Model Summary ":=^{width_total}}=='] # Model/status summary
model_summary_text += [f'=={" "*width_total}==']
model_summary_text += [f'=={"Model name": >{width_name}}: {self.get_model_name(): <{width_value}}=='] # Name
model_summary_text += [f'=={" "*width_total}==']
model_summary_text += [f'=={"Current iteration": >{width_name}}: {str(self.iter): <{width_value}}=='] # Iter
model_summary_text += [f'=={" "*width_total}==']
model_summary_text += [f'=={" Model Options ":-^{width_total}}=='] # Model options
model_summary_text += [f'=={" "*width_total}==']
for key in self.options.keys():
model_summary_text += ["== |== %s : %s" % (key, self.options[key])]
model_summary_text += [f'=={key: >{width_name}}: {str(self.options[key]): <{width_value}}=='] # self.options key/value pairs
model_summary_text += [f'=={" "*width_total}==']
model_summary_text += [f'=={" Running On ":-^{width_total}}=='] # Training hardware info
model_summary_text += [f'=={" "*width_total}==']
if self.device_config.multi_gpu:
model_summary_text += ["== |== multi_gpu : True "]
model_summary_text += ["== Running on:"]
model_summary_text += [f'=={"Using multi_gpu": >{width_name}}: {"True": <{width_value}}=='] # multi_gpu
model_summary_text += [f'=={" "*width_total}==']
if self.device_config.cpu_only:
model_summary_text += ["== |== [CPU]"]
model_summary_text += [f'=={"Using device": >{width_name}}: {"CPU": <{width_value}}=='] # cpu_only
else:
for idx in self.device_config.gpu_idxs:
model_summary_text += ["== |== [%d : %s]" % (idx, nnlib.device.getDeviceName(idx))]
if not self.device_config.cpu_only and self.device_config.gpu_vram_gb[0] == 2:
model_summary_text += ["=="]
model_summary_text += ["== WARNING: You are using 2GB GPU. Result quality may be significantly decreased."]
model_summary_text += ["== If training does not start, close all programs and try again."]
model_summary_text += ["== Also you can disable Windows Aero Desktop to get extra free VRAM."]
model_summary_text += ["=="]
model_summary_text += ["========================="]
model_summary_text = "\r\n".join(model_summary_text)
model_summary_text += [f'=={"Device index": >{width_name}}: {idx: <{width_value}}=='] # GPU hardware device index
model_summary_text += [f'=={"Name": >{width_name}}: {nnlib.device.getDeviceName(idx): <{width_value}}=='] # GPU name
vram_str = f'{nnlib.device.getDeviceVRAMTotalGb(idx):.2f}GB' # GPU VRAM - Formated as #.## (or ##.##)
model_summary_text += [f'=={"VRAM": >{width_name}}: {vram_str: <{width_value}}==']
model_summary_text += [f'=={" "*width_total}==']
model_summary_text += [f'=={"="*width_total}==']
if not self.device_config.cpu_only and self.device_config.gpu_vram_gb[0] <= 2: # Low VRAM warning
model_summary_text += ["/!\\"]
model_summary_text += ["/!\\ WARNING:"]
model_summary_text += ["/!\\ You are using a GPU with 2GB or less VRAM. This may significantly reduce the quality of your result!"]
model_summary_text += ["/!\\ If training does not start, close all programs and try again."]
model_summary_text += ["/!\\ Also you can disable Windows Aero Desktop to increase available VRAM."]
model_summary_text += ["/!\\"]
model_summary_text = "\n".join (model_summary_text)
self.model_summary_text = model_summary_text
io.log_info(model_summary_text)
# overridable
#overridable
def onInitializeOptions(self, is_first_run, ask_override):
pass
# overridable
#overridable
def onInitialize(self):
'''
initialize your keras models
@ -331,36 +349,36 @@ class ModelBase(object):
'''
pass
# overridable
#overridable
def onSave(self):
# save your keras models here
#save your keras models here
pass
# overridable
#overridable
def onTrainOneIter(self, sample, generator_list):
# train your keras models here
#train your keras models here
# return array of losses
return (('loss_src', 0), ('loss_dst', 0))
#return array of losses
return ( ('loss_src', 0), ('loss_dst', 0) )
# overridable
#overridable
def onGetPreview(self, sample):
# you can return multiple previews
# return [ ('preview_name',preview_rgb), ... ]
#you can return multiple previews
#return [ ('preview_name',preview_rgb), ... ]
return []
# overridable if you want model name differs from folder name
#overridable if you want model name differs from folder name
def get_model_name(self):
return Path(inspect.getmodule(self).__file__).parent.name.rsplit("_", 1)[1]
# overridable , return [ [model, filename],... ] list
#overridable , return [ [model, filename],... ] list
def get_model_filename_list(self):
return []
# overridable
#overridable
def get_converter(self):
raise NotImplementedError
# return existing or your own converter which derived from base
#return existing or your own converter which derived from base
def get_target_iter(self):
return self.target_iter
@ -368,8 +386,8 @@ class ModelBase(object):
def is_reached_iter_goal(self):
return self.target_iter != 0 and self.iter >= self.target_iter
# multi gpu in keras actually is fake and doesn't work for training https://github.com/keras-team/keras/issues/11976
# def to_multi_gpu_model_if_possible (self, models_list):
#multi gpu in keras actually is fake and doesn't work for training https://github.com/keras-team/keras/issues/11976
#def to_multi_gpu_model_if_possible (self, models_list):
# if len(self.device_config.gpu_idxs) > 1:
# #make batch_size to divide on GPU count without remainder
# self.batch_size = int( self.batch_size / len(self.device_config.gpu_idxs) )
@ -388,65 +406,65 @@ class ModelBase(object):
# return models_list
def get_previews(self):
return self.onGetPreview(self.last_sample)
return self.onGetPreview ( self.last_sample )
def get_static_preview(self):
return self.onGetPreview(self.sample_for_preview)[0][1] # first preview, and bgr
return self.onGetPreview (self.sample_for_preview)[0][1] #first preview, and bgr
def save(self):
self.options['batch_size'] = self.batch_size
self.options['paddle'] = self.paddle
summary_path = self.get_strpath_storage_for_file('summary.txt')
Path(summary_path).write_text(self.model_summary_text)
Path( summary_path ).write_text(self.model_summary_text)
self.onSave()
model_data = {
'iter': self.iter,
'options': self.options,
'loss_history': self.loss_history,
'sample_for_preview': self.sample_for_preview
'sample_for_preview' : self.sample_for_preview
}
self.model_data_path.write_bytes(pickle.dumps(model_data))
self.model_data_path.write_bytes( pickle.dumps(model_data) )
bckp_filename_list = [self.get_strpath_storage_for_file(filename) for _, filename in
self.get_model_filename_list()]
bckp_filename_list += [str(summary_path), str(self.model_data_path)]
bckp_filename_list += [ str(summary_path), str(self.model_data_path) ]
if self.autobackup:
current_hour = time.localtime().tm_hour
if self.autobackup_current_hour != current_hour:
self.autobackup_current_hour = current_hour
for i in range(15, 0, -1):
for i in range(15,0,-1):
idx_str = '%.2d' % i
next_idx_str = '%.2d' % (i + 1)
next_idx_str = '%.2d' % (i+1)
idx_backup_path = self.autobackups_path / idx_str
next_idx_packup_path = self.autobackups_path / next_idx_str
if idx_backup_path.exists():
if i == 15:
if i == 15:
Path_utils.delete_all_files(idx_backup_path)
else:
next_idx_packup_path.mkdir(exist_ok=True)
Path_utils.move_all_files(idx_backup_path, next_idx_packup_path)
Path_utils.move_all_files (idx_backup_path, next_idx_packup_path)
if i == 1:
idx_backup_path.mkdir(exist_ok=True)
for filename in bckp_filename_list:
shutil.copy(str(filename), str(idx_backup_path / Path(filename).name))
idx_backup_path.mkdir(exist_ok=True)
for filename in bckp_filename_list:
shutil.copy ( str(filename), str(idx_backup_path / Path(filename).name) )
previews = self.get_previews()
plist = []
for i in range(len(previews)):
name, bgr = previews[i]
plist += [(bgr, idx_backup_path / (('preview_%s.jpg') % (name)))]
plist += [ (bgr, idx_backup_path / ( ('preview_%s.jpg') % (name)) ) ]
for preview, filepath in plist:
preview_lh = ModelBase.get_loss_history_preview(self.loss_history, self.iter,self.batch_size,
preview.shape[1], preview.shape[2])
img = (np.concatenate([preview_lh, preview], axis=0) * 255).astype(np.uint8)
cv2_imwrite(filepath, img)
img = (np.concatenate ( [preview_lh, preview], axis=0 ) * 255).astype(np.uint8)
cv2_imwrite (filepath, img )
def load_weights_safe(self, model_filename_list, optimizer_filename_list=[]):
for model, filename in model_filename_list:
@ -469,15 +487,15 @@ class ModelBase(object):
opt.set_weights(weights)
print("set ok")
except Exception as e:
print("Unable to load ", opt_filename)
print ("Unable to load ", opt_filename)
def save_weights_safe(self, model_filename_list):
for model, filename in model_filename_list:
filename = self.get_strpath_storage_for_file(filename)
model.save_weights(filename + '.tmp')
model.save_weights( filename + '.tmp' )
rename_list = model_filename_list
"""
#unused
, optimizer_filename_list=[]
@ -501,24 +519,24 @@ class ModelBase(object):
except Exception as e:
print ("Unable to save ", opt_filename)
"""
for _, filename in rename_list:
filename = self.get_strpath_storage_for_file(filename)
source_filename = Path(filename + '.tmp')
source_filename = Path(filename+'.tmp')
if source_filename.exists():
target_filename = Path(filename)
if target_filename.exists():
target_filename.unlink()
source_filename.rename(str(target_filename))
source_filename.rename ( str(target_filename) )
def debug_one_iter(self):
images = []
for generator in self.generator_list:
for i, batch in enumerate(next(generator)):
for i,batch in enumerate(next(generator)):
if len(batch.shape) == 4:
images.append(batch[0])
images.append( batch[0] )
return imagelib.equalize_and_stack_square(images)
return imagelib.equalize_and_stack_square (images)
def generate_next_sample(self):
return [ generator.generate_next() for generator in self.generator_list]
@ -536,7 +554,7 @@ class ModelBase(object):
iter_time = time.time() - iter_time
self.last_sample = sample
self.loss_history.append([float(loss[1]) for loss in losses])
self.loss_history.append ( [float(loss[1]) for loss in losses] )
if self.iter % 10 == 0:
plist = []
@ -545,16 +563,16 @@ class ModelBase(object):
previews = self.get_previews()
for i in range(len(previews)):
name, bgr = previews[i]
plist += [(bgr, self.get_strpath_storage_for_file('preview_%s.jpg' % (name)))]
plist += [ (bgr, self.get_strpath_storage_for_file('preview_%s.jpg' % (name) ) ) ]
if self.write_preview_history:
plist += [(self.get_static_preview(), str(self.preview_history_path / ('%.6d.jpg' % (self.iter))))]
plist += [ (self.get_static_preview(), str (self.preview_history_path / ('%.6d.jpg' % (self.iter))) ) ]
for preview, filepath in plist:
preview_lh = ModelBase.get_loss_history_preview(self.loss_history, self.iter,self.batch_size, preview.shape[1],
preview.shape[2])
img = (np.concatenate([preview_lh, preview], axis=0) * 255).astype(np.uint8)
cv2_imwrite(filepath, img)
img = (np.concatenate ( [preview_lh, preview], axis=0 ) * 255).astype(np.uint8)
cv2_imwrite (filepath, img )
if self.iter % self.ping_pong_iter == 0 and self.iter != 0 and self.options.get('ping_pong', False):
if self.batch_size == self.batch_cap:
@ -599,10 +617,10 @@ class ModelBase(object):
def get_loss_history(self):
return self.loss_history
def set_training_data_generators(self, generator_list):
def set_training_data_generators (self, generator_list):
self.generator_list = generator_list
def get_training_data_generators(self):
def get_training_data_generators (self):
return self.generator_list
def get_model_root_path(self):
@ -610,13 +628,13 @@ class ModelBase(object):
def get_strpath_storage_for_file(self, filename):
if self.device_args['force_gpu_idx'] == -1:
return str(self.model_path / (self.get_model_name() + '_' + filename))
return str( self.model_path / ( self.get_model_name() + '_' + filename) )
else:
return str(self.model_path / (
str(self.device_args['force_gpu_idx']) + '_' + self.get_model_name() + '_' + filename))
def set_vram_batch_requirements(self, d):
# example d = {2:2,3:4,4:8,5:16,6:32,7:32,8:32,9:48}
def set_vram_batch_requirements (self, d):
#example d = {2:2,3:4,4:8,5:16,6:32,7:32,8:32,9:48}
keys = [x for x in d.keys()]
if self.device_config.cpu_only:
@ -630,63 +648,63 @@ class ModelBase(object):
break
if self.batch_size == 0:
self.batch_size = d[keys[-1]]
self.batch_size = d[ keys[-1] ]
@staticmethod
def get_loss_history_preview(loss_history, iter,batch_size, w, c):
loss_history = np.array(loss_history.copy())
loss_history = np.array (loss_history.copy())
lh_height = 100
lh_img = np.ones((lh_height, w, c)) * 0.1
if len(loss_history) != 0:
lh_img = np.ones ( (lh_height,w,c) ) * 0.1
if len(loss_history) != 0:
loss_count = len(loss_history[0])
lh_len = len(loss_history)
l_per_col = lh_len / w
plist_max = [[max(0.0, loss_history[int(col * l_per_col)][p],
*[loss_history[i_ab][p]
for i_ab in range(int(col * l_per_col), int((col + 1) * l_per_col))
]
)
for p in range(loss_count)
]
for col in range(w)
]
plist_max = [ [ max (0.0, loss_history[int(col*l_per_col)][p],
*[ loss_history[i_ab][p]
for i_ab in range( int(col*l_per_col), int((col+1)*l_per_col) )
]
)
for p in range(loss_count)
]
for col in range(w)
]
plist_min = [[min(plist_max[col][p], loss_history[int(col * l_per_col)][p],
*[loss_history[i_ab][p]
for i_ab in range(int(col * l_per_col), int((col + 1) * l_per_col))
]
)
for p in range(loss_count)
]
for col in range(w)
]
plist_min = [ [ min (plist_max[col][p], loss_history[int(col*l_per_col)][p],
*[ loss_history[i_ab][p]
for i_ab in range( int(col*l_per_col), int((col+1)*l_per_col) )
]
)
for p in range(loss_count)
]
for col in range(w)
]
plist_abs_max = np.mean(loss_history[len(loss_history) // 5:]) * 2
plist_abs_max = np.mean(loss_history[ len(loss_history) // 5 : ]) * 2
for col in range(0, w):
for p in range(0, loss_count):
point_color = [1.0] * c
point_color[0:3] = colorsys.hsv_to_rgb(p * (1.0 / loss_count), 1.0, 1.0)
for p in range(0,loss_count):
point_color = [1.0]*c
point_color[0:3] = colorsys.hsv_to_rgb ( p * (1.0/loss_count), 1.0, 1.0 )
ph_max = int((plist_max[col][p] / plist_abs_max) * (lh_height - 1))
ph_max = np.clip(ph_max, 0, lh_height - 1)
ph_max = int ( (plist_max[col][p] / plist_abs_max) * (lh_height-1) )
ph_max = np.clip( ph_max, 0, lh_height-1 )
ph_min = int((plist_min[col][p] / plist_abs_max) * (lh_height - 1))
ph_min = np.clip(ph_min, 0, lh_height - 1)
ph_min = int ( (plist_min[col][p] / plist_abs_max) * (lh_height-1) )
ph_min = np.clip( ph_min, 0, lh_height-1 )
for ph in range(ph_min, ph_max + 1):
lh_img[(lh_height - ph - 1), col] = point_color
for ph in range(ph_min, ph_max+1):
lh_img[ (lh_height-ph-1), col ] = point_color
lh_lines = 5
lh_line_height = (lh_height - 1) / lh_lines
for i in range(0, lh_lines + 1):
lh_img[int(i * lh_line_height), :] = (0.8,) * c
lh_line_height = (lh_height-1)/lh_lines
for i in range(0,lh_lines+1):
lh_img[ int(i*lh_line_height), : ] = (0.8,)*c
last_line_t = int((lh_lines - 1) * lh_line_height)
last_line_b = int(lh_lines * lh_line_height)
last_line_t = int((lh_lines-1)*lh_line_height)
last_line_b = int(lh_lines*lh_line_height)
lh_text = 'Iter: %d' % iter if iter != 0 else ''
bs_text = 'BS: %d' % batch_size if batch_size is not None else '1'

View file

@ -7,7 +7,7 @@ IMAGE_EXTENSIONS = (".jpg", ".jpeg", ".png", ".tif", ".tiff")
def get_image_paths(dir_path: str, image_extensions: List[str] = IMAGE_EXTENSIONS) -> List[str]:
dir_path = Path(dir_path)
dir_path = Path (dir_path)
result = []
if dir_path.exists():
@ -26,41 +26,41 @@ def get_image_unique_filestem_paths(dir_path: str, verbose_print_func: Optional[
if f_stem in result_dup:
result.remove(f)
if verbose_print_func is not None:
verbose_print_func("Duplicate filenames are not allowed, skipping: %s" % Path(f).name)
verbose_print_func ("Duplicate filenames are not allowed, skipping: %s" % Path(f).name )
continue
result_dup.add(f_stem)
return sorted(result)
def get_file_paths(dir_path: str) -> List[str]:
dir_path = Path(dir_path)
if dir_path.exists():
return [x.path for x in scandir(str(dir_path)) if x.is_file()]
return sorted([x.path for x in scandir(str(dir_path)) if x.is_file()])
return []
def get_all_dir_names(dir_path: str) -> List[str]:
dir_path = Path(dir_path)
if dir_path.exists():
return [x.name for x in scandir(str(dir_path)) if x.is_dir()]
return sorted([x.name for x in scandir(str(dir_path)) if x.is_dir()])
return []
def get_all_dir_names_startswith(dir_path: str, startswith: str) -> List[str]:
dir_path = Path(dir_path)
dir_path = Path (dir_path)
startswith = startswith.lower()
result = []
if dir_path.exists():
for x in scandir(str(dir_path)):
if x.name.lower().startswith(startswith):
result.append(x.name[len(startswith):])
result.append ( x.name[len(startswith):] )
return sorted(result)
def get_first_file_by_stem(dir_path: str, stem: str, exts: List[str] = None) -> Optional[Path]:
dir_path = Path(dir_path)
dir_path = Path (dir_path)
stem = stem.lower()
if dir_path.exists():
@ -78,8 +78,8 @@ def move_all_files(src_dir_path: str, dst_dir_path: str) -> None:
paths = get_file_paths(src_dir_path)
for p in paths:
p = Path(p)
p.rename(Path(dst_dir_path) / p.name)
p.rename ( Path(dst_dir_path) / p.name )
def delete_all_files(dir_path: str) -> None:
paths = get_file_paths(dir_path)