mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-07 13:32:09 -07:00
removed UFM model,
added 'random_flip' option to all models, by default - true
This commit is contained in:
parent
1a13c5eaa9
commit
3b0b1a7dec
11 changed files with 19 additions and 315 deletions
10
README.md
10
README.md
|
@ -70,12 +70,6 @@ LIAEF128 Cage video:
|
|||
|
||||
[](https://www.youtube.com/watch?v=mRsexePEVco)
|
||||
|
||||
- **UFM (2GB+)** - U-net Face Morpher model with my new face style loss. If "match_style" option choosed, then this model tries to morph src face to target face and fill around face same background. UFM is result of combining modified U-Net, classic face autoencoder, DSSIM and style losses.
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
- **SAE (2GB+)** - Styled AutoEncoder. It is like LIAEF but with new face style loss like in UFM.
|
||||
|
||||

|
||||
|
@ -84,10 +78,6 @@ LIAEF128 Cage video:
|
|||
|
||||
SAE model Cage-Trump video: https://www.youtube.com/watch?v=2R_aqHBClUQ
|
||||
|
||||
- **SAE vs UFM** .
|
||||
|
||||
[](https://www.youtube.com/watch?v=ywiv0_PTp1w)
|
||||
|
||||

|
||||
|
||||
### **Sort tool**:
|
||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 147 KiB |
Binary file not shown.
Before Width: | Height: | Size: 147 KiB |
|
@ -62,13 +62,14 @@ class ModelBase(object):
|
|||
self.options['target_epoch'] = max(0, input_int("Target epoch (skip:unlimited) : ", 0))
|
||||
self.options['batch_size'] = max(0, input_int("Batch_size (skip:model choice) : ", 0))
|
||||
self.options['sort_by_yaw'] = input_bool("Feed faces to network sorted by yaw? (y/n skip:n) : ", False)
|
||||
|
||||
self.options['random_flip'] = input_bool("Flip faces randomly? (y/n skip:y) : ", True)
|
||||
#self.options['use_fp16'] = use_fp16 = input_bool("Use float16? (y/n skip:n) : ", False)
|
||||
else:
|
||||
self.options['write_preview_history'] = self.options.get('write_preview_history', False)
|
||||
self.options['target_epoch'] = self.options.get('target_epoch', 0)
|
||||
self.options['batch_size'] = self.options.get('batch_size', 0)
|
||||
self.options['sort_by_yaw'] = self.options.get('sort_by_yaw', False)
|
||||
self.options['random_flip'] = self.options.get('random_flip', True)
|
||||
#self.options['use_fp16'] = use_fp16 = self.options['use_fp16'] if 'use_fp16' in self.options.keys() else False
|
||||
|
||||
use_fp16 = False #currently models fails with fp16
|
||||
|
@ -100,7 +101,11 @@ class ModelBase(object):
|
|||
self.sort_by_yaw = self.options['sort_by_yaw']
|
||||
if not self.sort_by_yaw:
|
||||
self.options.pop('sort_by_yaw')
|
||||
|
||||
|
||||
self.random_flip = self.options['random_flip']
|
||||
if self.random_flip:
|
||||
self.options.pop('random_flip')
|
||||
|
||||
self.write_preview_history = session_write_preview_history
|
||||
self.target_epoch = session_target_epoch
|
||||
self.batch_size = session_batch_size
|
||||
|
|
|
@ -40,11 +40,13 @@ class Model(ModelBase):
|
|||
self.set_training_data_generators ([
|
||||
SampleGeneratorFace(self.training_data_src_path, sort_by_yaw_target_samples_path=self.training_data_dst_path if self.sort_by_yaw else None,
|
||||
debug=self.is_debug(), batch_size=self.batch_size,
|
||||
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
|
||||
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_M | f.FACE_MASK_FULL, 128] ] ),
|
||||
|
||||
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
|
||||
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_M | f.FACE_MASK_FULL, 128] ] )
|
||||
|
|
|
@ -46,11 +46,13 @@ class Model(ModelBase):
|
|||
self.set_training_data_generators ([
|
||||
SampleGeneratorFace(self.training_data_src_path, sort_by_yaw_target_samples_path=self.training_data_dst_path if self.sort_by_yaw else None,
|
||||
debug=self.is_debug(), batch_size=self.batch_size,
|
||||
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
|
||||
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 128],
|
||||
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 128],
|
||||
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_M | f.FACE_MASK_FULL, 128] ] ),
|
||||
|
||||
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
|
||||
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 128],
|
||||
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 128],
|
||||
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_M | f.FACE_MASK_FULL, 128] ] )
|
||||
|
|
|
@ -47,11 +47,13 @@ class Model(ModelBase):
|
|||
self.set_training_data_generators ([
|
||||
SampleGeneratorFace(self.training_data_src_path, sort_by_yaw_target_samples_path=self.training_data_dst_path if self.sort_by_yaw else None,
|
||||
debug=self.is_debug(), batch_size=self.batch_size,
|
||||
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
|
||||
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
|
||||
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
|
||||
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_M | f.FACE_MASK_FULL, 64] ] ),
|
||||
|
||||
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
|
||||
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
|
||||
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
|
||||
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_M | f.FACE_MASK_FULL, 64] ] )
|
||||
|
|
|
@ -46,12 +46,14 @@ class Model(ModelBase):
|
|||
|
||||
|
||||
SampleGeneratorFace(self.training_data_src_path, sort_by_yaw_target_samples_path=self.training_data_dst_path if self.sort_by_yaw else None,
|
||||
debug=self.is_debug(), batch_size=self.batch_size,
|
||||
debug=self.is_debug(), batch_size=self.batch_size,
|
||||
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
|
||||
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_M | f.FACE_MASK_FULL, 128] ] ),
|
||||
|
||||
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
|
||||
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_M | f.FACE_MASK_FULL, 128] ] )
|
||||
|
|
|
@ -159,7 +159,7 @@ class SAEModel(ModelBase):
|
|||
self.set_training_data_generators ([
|
||||
SampleGeneratorFace(self.training_data_src_path, sort_by_yaw_target_samples_path=self.training_data_dst_path if self.sort_by_yaw else None,
|
||||
debug=self.is_debug(), batch_size=self.batch_size,
|
||||
sample_process_options=SampleProcessor.Options(normalize_tanh = True),
|
||||
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, normalize_tanh = True),
|
||||
output_sample_types=[ [f.WARPED_TRANSFORMED | face_type | f.MODE_BGR, resolution],
|
||||
[f.TRANSFORMED | face_type | f.MODE_BGR, resolution],
|
||||
[f.TRANSFORMED | face_type | f.MODE_M | f.FACE_MASK_FULL, resolution],
|
||||
|
@ -168,7 +168,7 @@ class SAEModel(ModelBase):
|
|||
] ),
|
||||
|
||||
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||
sample_process_options=SampleProcessor.Options(normalize_tanh = True),
|
||||
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, normalize_tanh = True),
|
||||
output_sample_types=[ [f.WARPED_TRANSFORMED | face_type | f.MODE_BGR, resolution],
|
||||
[f.TRANSFORMED | face_type | f.MODE_BGR, resolution],
|
||||
[f.TRANSFORMED | face_type | f.MODE_M | f.FACE_MASK_FULL, resolution] ] )
|
||||
|
|
|
@ -1,298 +0,0 @@
|
|||
import numpy as np
|
||||
|
||||
from nnlib import nnlib
|
||||
from models import ModelBase
|
||||
from facelib import FaceType
|
||||
from samples import *
|
||||
from utils.console_utils import *
|
||||
|
||||
#U-net Face Morpher
|
||||
class UFMModel(ModelBase):
|
||||
|
||||
encoderH5 = 'encoder.h5'
|
||||
decoder_srcH5 = 'decoder_src.h5'
|
||||
decoder_dstH5 = 'decoder_dst.h5'
|
||||
decoder_srcmH5 = 'decoder_srcm.h5'
|
||||
decoder_dstmH5 = 'decoder_dstm.h5'
|
||||
|
||||
#override
|
||||
def onInitializeOptions(self, is_first_run, ask_for_session_options):
|
||||
default_resolution = 128
|
||||
default_filters = 64
|
||||
default_match_style = True
|
||||
default_face_type = 'f'
|
||||
|
||||
if is_first_run:
|
||||
#first run
|
||||
self.options['resolution'] = input_int("Resolution (valid: 64,128,256, skip:128) : ", default_resolution, [64,128,256])
|
||||
self.options['filters'] = np.clip ( input_int("Number of U-net filters (valid: 32-128, skip:64) : ", default_filters), 32, 128 )
|
||||
self.options['match_style'] = input_bool ("Match style? (y/n skip:y) : ", default_match_style)
|
||||
self.options['face_type'] = input_str ("Half or Full face? (h/f, skip:f) : ", default_face_type, ['h','f'])
|
||||
|
||||
else:
|
||||
#not first run
|
||||
self.options['resolution'] = self.options.get('resolution', default_resolution)
|
||||
self.options['filters'] = self.options.get('filters', default_filters)
|
||||
self.options['match_style'] = self.options.get('match_style', default_match_style)
|
||||
self.options['face_type'] = self.options.get('face_type', default_face_type)
|
||||
|
||||
#override
|
||||
def onInitialize(self, **in_options):
|
||||
exec(nnlib.import_all(), locals(), globals())
|
||||
|
||||
self.set_vram_batch_requirements({2:1,3:2,4:6,5:8,6:16,7:24,8:32})
|
||||
|
||||
resolution = self.options['resolution']
|
||||
bgr_shape = (resolution, resolution, 3)
|
||||
mask_shape = (resolution, resolution, 1)
|
||||
|
||||
filters = self.options['filters']
|
||||
|
||||
if resolution == 64:
|
||||
lowest_dense = 512
|
||||
elif resolution == 128:
|
||||
lowest_dense = 512
|
||||
elif resolution == 256:
|
||||
lowest_dense = 256
|
||||
|
||||
self.encoder = modelify(UFMModel.EncFlow (ngf=filters, lowest_dense=lowest_dense)) (Input(bgr_shape))
|
||||
|
||||
dec_Inputs = [ Input(K.int_shape(x)[1:]) for x in self.encoder.outputs ]
|
||||
|
||||
self.decoder_src = modelify(UFMModel.DecFlow (bgr_shape[2], ngf=filters)) (dec_Inputs)
|
||||
self.decoder_dst = modelify(UFMModel.DecFlow (bgr_shape[2], ngf=filters)) (dec_Inputs)
|
||||
|
||||
self.decoder_srcm = modelify(UFMModel.DecFlow (mask_shape[2], ngf=filters//2)) (dec_Inputs)
|
||||
self.decoder_dstm = modelify(UFMModel.DecFlow (mask_shape[2], ngf=filters//2)) (dec_Inputs)
|
||||
|
||||
if not self.is_first_run():
|
||||
self.encoder.load_weights (self.get_strpath_storage_for_file(self.encoderH5))
|
||||
self.decoder_src.load_weights (self.get_strpath_storage_for_file(self.decoder_srcH5))
|
||||
self.decoder_dst.load_weights (self.get_strpath_storage_for_file(self.decoder_dstH5))
|
||||
self.decoder_srcm.load_weights (self.get_strpath_storage_for_file(self.decoder_srcmH5))
|
||||
self.decoder_dstm.load_weights (self.get_strpath_storage_for_file(self.decoder_dstmH5))
|
||||
|
||||
warped_src = Input(bgr_shape)
|
||||
target_src = Input(bgr_shape)
|
||||
target_srcm = Input(mask_shape)
|
||||
|
||||
warped_src_code = self.encoder (warped_src)
|
||||
pred_src_src = self.decoder_src(warped_src_code)
|
||||
pred_src_srcm = self.decoder_srcm(warped_src_code)
|
||||
|
||||
warped_dst = Input(bgr_shape)
|
||||
target_dst = Input(bgr_shape)
|
||||
target_dstm = Input(mask_shape)
|
||||
|
||||
warped_dst_code = self.encoder (warped_dst)
|
||||
pred_dst_dst = self.decoder_dst(warped_dst_code)
|
||||
pred_dst_dstm = self.decoder_dstm(warped_dst_code)
|
||||
|
||||
pred_src_dst = self.decoder_src(warped_dst_code)
|
||||
pred_src_dstm = self.decoder_srcm(warped_dst_code)
|
||||
|
||||
target_srcm_blurred = tf_gaussian_blur(resolution // 32)(target_srcm)
|
||||
target_srcm_sigm = target_srcm_blurred / 2.0 + 0.5
|
||||
target_srcm_anti_sigm = 1.0 - target_srcm_sigm
|
||||
|
||||
target_dstm_blurred = tf_gaussian_blur(resolution // 32)(target_dstm)
|
||||
target_dstm_sigm = target_dstm_blurred / 2.0 + 0.5
|
||||
target_dstm_anti_sigm = 1.0 - target_dstm_sigm
|
||||
|
||||
target_src_sigm = target_src+1
|
||||
target_dst_sigm = target_dst+1
|
||||
|
||||
pred_src_src_sigm = pred_src_src+1
|
||||
pred_dst_dst_sigm = pred_dst_dst+1
|
||||
pred_src_dst_sigm = pred_src_dst+1
|
||||
|
||||
target_src_masked = target_src_sigm*target_srcm_sigm
|
||||
|
||||
target_dst_masked = target_dst_sigm * target_dstm_sigm
|
||||
target_dst_anti_masked = target_dst_sigm * target_dstm_anti_sigm
|
||||
|
||||
pred_src_src_masked = pred_src_src_sigm * target_srcm_sigm
|
||||
pred_dst_dst_masked = pred_dst_dst_sigm * target_dstm_sigm
|
||||
|
||||
pred_src_dst_target_dst_masked = pred_src_dst_sigm * target_dstm_sigm
|
||||
pred_src_dst_target_dst_anti_masked = pred_src_dst_sigm * target_dstm_anti_sigm
|
||||
|
||||
|
||||
src_loss = K.mean( 100*K.square(tf_dssim(2.0)( target_src_masked, pred_src_src_masked )) )
|
||||
if self.options['match_style']:
|
||||
src_loss += tf_style_loss(gaussian_blur_radius=resolution // 8, loss_weight=0.015)(pred_src_dst_target_dst_masked, target_dst_masked)
|
||||
src_loss += 0.05 * K.mean( tf_dssim(2.0)( pred_src_dst_target_dst_anti_masked, target_dst_anti_masked ))
|
||||
|
||||
self.src_train = K.function ([warped_src, target_src, target_srcm, warped_dst, target_dst, target_dstm ],[src_loss],
|
||||
Adam(lr=5e-5, beta_1=0.5, beta_2=0.999).get_updates(src_loss, self.encoder.trainable_weights + self.decoder_src.trainable_weights) )
|
||||
|
||||
dst_loss = K.mean( 100*K.square(tf_dssim(2.0)( target_dst_masked, pred_dst_dst_masked )) )
|
||||
self.dst_train = K.function ([warped_dst, target_dst, target_dstm],[dst_loss],
|
||||
Adam(lr=5e-5, beta_1=0.5, beta_2=0.999).get_updates(dst_loss, self.encoder.trainable_weights + self.decoder_dst.trainable_weights) )
|
||||
|
||||
|
||||
src_mask_loss = K.mean(K.square(target_srcm-pred_src_srcm))
|
||||
self.src_mask_train = K.function ([warped_src, target_srcm],[src_mask_loss],
|
||||
Adam(lr=5e-5, beta_1=0.5, beta_2=0.999).get_updates(src_mask_loss, self.encoder.trainable_weights + self.decoder_srcm.trainable_weights) )
|
||||
|
||||
dst_mask_loss = K.mean(K.square(target_dstm-pred_dst_dstm))
|
||||
self.dst_mask_train = K.function ([warped_dst, target_dstm],[dst_mask_loss],
|
||||
Adam(lr=5e-5, beta_1=0.5, beta_2=0.999).get_updates(dst_mask_loss, self.encoder.trainable_weights + self.decoder_dstm.trainable_weights) )
|
||||
|
||||
self.AE_view = K.function ([warped_src, warped_dst],[pred_src_src, pred_src_srcm, pred_dst_dst, pred_dst_dstm, pred_src_dst, pred_src_dstm])
|
||||
self.AE_convert = K.function ([warped_dst],[pred_src_dst, pred_src_dstm])
|
||||
|
||||
if self.is_training_mode:
|
||||
f = SampleProcessor.TypeFlags
|
||||
|
||||
face_type = f.FACE_ALIGN_FULL if self.options['face_type'] == 'f' else f.FACE_ALIGN_HALF
|
||||
|
||||
self.set_training_data_generators ([
|
||||
SampleGeneratorFace(self.training_data_src_path, sort_by_yaw_target_samples_path=self.training_data_dst_path if self.sort_by_yaw else None,
|
||||
debug=self.is_debug(), batch_size=self.batch_size,
|
||||
sample_process_options=SampleProcessor.Options(normalize_tanh = True),
|
||||
output_sample_types=[ [f.WARPED_TRANSFORMED | face_type | f.MODE_BGR, resolution],
|
||||
[f.TRANSFORMED | face_type | f.MODE_BGR, resolution],
|
||||
[f.TRANSFORMED | face_type | f.MODE_M | f.FACE_MASK_FULL, resolution] ] ),
|
||||
|
||||
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||
sample_process_options=SampleProcessor.Options(normalize_tanh = True),
|
||||
output_sample_types=[ [f.WARPED_TRANSFORMED | face_type | f.MODE_BGR, resolution],
|
||||
[f.TRANSFORMED | face_type | f.MODE_BGR, resolution],
|
||||
[f.TRANSFORMED | face_type | f.MODE_M | f.FACE_MASK_FULL, resolution] ] )
|
||||
])
|
||||
#override
|
||||
def onSave(self):
|
||||
self.save_weights_safe( [[self.encoder, self.get_strpath_storage_for_file(self.encoderH5)],
|
||||
[self.decoder_src, self.get_strpath_storage_for_file(self.decoder_srcH5)],
|
||||
[self.decoder_dst, self.get_strpath_storage_for_file(self.decoder_dstH5)],
|
||||
[self.decoder_srcm, self.get_strpath_storage_for_file(self.decoder_srcmH5)],
|
||||
[self.decoder_dstm, self.get_strpath_storage_for_file(self.decoder_dstmH5)]
|
||||
] )
|
||||
|
||||
#override
|
||||
def onTrainOneEpoch(self, sample):
|
||||
warped_src, target_src, target_src_mask = sample[0]
|
||||
warped_dst, target_dst, target_dst_mask = sample[1]
|
||||
|
||||
src_loss, = self.src_train ([warped_src, target_src, target_src_mask, warped_dst, target_dst, target_dst_mask])
|
||||
dst_loss, = self.dst_train ([warped_dst, target_dst, target_dst_mask])
|
||||
|
||||
src_mask_loss, = self.src_mask_train ([warped_src, target_src_mask])
|
||||
dst_mask_loss, = self.dst_mask_train ([warped_dst, target_dst_mask])
|
||||
|
||||
return ( ('src_loss', src_loss), ('dst_loss', dst_loss) )
|
||||
|
||||
|
||||
#override
|
||||
def onGetPreview(self, sample):
|
||||
test_A = sample[0][1][0:4] #first 4 samples
|
||||
test_A_m = sample[0][2][0:4] #first 4 samples
|
||||
test_B = sample[1][1][0:4]
|
||||
test_B_m = sample[1][2][0:4]
|
||||
|
||||
S = test_A
|
||||
D = test_B
|
||||
|
||||
SS, SM, DD, DM, SD, SDM = self.AE_view ([test_A, test_B])
|
||||
S, D, SS, SM, DD, DM, SD, SDM = [ x / 2 + 0.5 for x in [S, D, SS, SM, DD, DM, SD, SDM] ]
|
||||
|
||||
SM, DM, SDM = [ np.repeat (x, (3,), -1) for x in [SM, DM, SDM] ]
|
||||
|
||||
st = []
|
||||
for i in range(0, len(test_A)):
|
||||
st.append ( np.concatenate ( (
|
||||
S[i], SS[i], #SM[i],
|
||||
D[i], DD[i], #DM[i],
|
||||
SD[i], #SDM[i]
|
||||
), axis=1) )
|
||||
|
||||
return [ ('U-net Face Morpher', np.concatenate ( st, axis=0 ) ) ]
|
||||
|
||||
def predictor_func (self, face):
|
||||
|
||||
face = face * 2.0 - 1.0
|
||||
|
||||
face_128_bgr = face[...,0:3]
|
||||
|
||||
x, mx = [ (x[0] + 1.0) / 2.0 for x in self.AE_convert ( [ np.expand_dims(face_128_bgr,0) ] ) ]
|
||||
|
||||
if self.options['match_style']:
|
||||
res = self.options['resolution']
|
||||
s = int( res * 0.96875 )
|
||||
mx = np.pad ( np.ones ( (s,s) ), (res-s) // 2 , mode='constant')
|
||||
mx = np.expand_dims(mx, -1)
|
||||
|
||||
return np.concatenate ( (x,mx), -1 )
|
||||
|
||||
#override
|
||||
def get_converter(self, **in_options):
|
||||
from models import ConverterMasked
|
||||
|
||||
if self.options['match_style']:
|
||||
base_erode_mask_modifier = 50
|
||||
base_blur_mask_modifier = 50
|
||||
else:
|
||||
base_erode_mask_modifier = 30 if self.options['face_type'] == 'f' else 100
|
||||
base_blur_mask_modifier = 0 if self.options['face_type'] == 'f' else 100
|
||||
|
||||
face_type = FaceType.FULL if self.options['face_type'] == 'f' else FaceType.HALF
|
||||
|
||||
return ConverterMasked(self.predictor_func,
|
||||
predictor_input_size=self.options['resolution'],
|
||||
output_size=self.options['resolution'],
|
||||
face_type=face_type,
|
||||
base_erode_mask_modifier=base_erode_mask_modifier,
|
||||
base_blur_mask_modifier=base_blur_mask_modifier,
|
||||
**in_options)
|
||||
|
||||
@staticmethod
|
||||
def EncFlow(ngf=64, num_downs=4, lowest_dense=512):
|
||||
exec (nnlib.import_all(), locals(), globals())
|
||||
|
||||
use_bias = True
|
||||
def XNormalization(x):
|
||||
return InstanceNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x)
|
||||
|
||||
def Conv2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=use_bias, kernel_initializer=RandomNormal(0, 0.02), bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None):
|
||||
return keras.layers.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint )
|
||||
|
||||
def func(input):
|
||||
x = input
|
||||
|
||||
result = []
|
||||
for i in range(num_downs):
|
||||
x = LeakyReLU(0.1)(XNormalization(Conv2D( min(ngf* (2**i), ngf*8) , 5, 2, 'same')(x)))
|
||||
|
||||
if i == 3:
|
||||
x_shape = K.int_shape(x)[1:]
|
||||
x = Reshape(x_shape)(Dense( np.prod(x_shape) )(Dense(lowest_dense)(Flatten()(x))))
|
||||
result += [x]
|
||||
|
||||
return result
|
||||
return func
|
||||
|
||||
@staticmethod
|
||||
def DecFlow(output_nc, ngf=64, activation='tanh'):
|
||||
exec (nnlib.import_all(), locals(), globals())
|
||||
|
||||
use_bias = True
|
||||
def XNormalization(x):
|
||||
return InstanceNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x)
|
||||
|
||||
def Conv2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=use_bias, kernel_initializer=RandomNormal(0, 0.02), bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None):
|
||||
return keras.layers.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint )
|
||||
|
||||
def func(input):
|
||||
input_len = len(input)
|
||||
|
||||
x = input[input_len-1]
|
||||
for i in range(input_len-1, -1, -1):
|
||||
x = SubpixelUpscaler()( LeakyReLU(0.1)(XNormalization(Conv2D( min(ngf* (2**i) *4, ngf*8 *4 ), 3, 1, 'same')(x))) )
|
||||
if i != 0:
|
||||
x = Concatenate(axis=3)([ input[i-1] , x])
|
||||
|
||||
return Conv2D(output_nc, 3, 1, 'same', activation=activation)(x)
|
||||
return func
|
||||
|
||||
Model = UFMModel
|
|
@ -1 +0,0 @@
|
|||
from .Model import Model
|
Loading…
Add table
Add a link
Reference in a new issue