more debugging

This commit is contained in:
Jeremy Hummel 2019-10-20 00:28:52 -04:00
commit 39446f6188
2 changed files with 14 additions and 13 deletions

View file

@ -478,7 +478,7 @@ class SAEHDModel(ModelBase):
if self.options['ms_ssim_loss']:
# TODO - Done
src_loss = K.mean(10 * MsSSIM(max_value=1.0, power_factors=(1.0,))(target_src_masked_opt, pred_src_src_masked_opt))
src_loss = K.mean(10 * MsSSIM(max_value=1.0)(target_src_masked_opt, pred_src_src_masked_opt))
else:
src_loss = K.mean ( 10*dssim(kernel_size=int(resolution/11.6),max_value=1.0)( target_src_masked_opt, pred_src_src_masked_opt) )
src_loss += K.mean ( 10*K.square( target_src_masked_opt - pred_src_src_masked_opt ) )
@ -495,14 +495,14 @@ class SAEHDModel(ModelBase):
if bg_style_power != 0:
if self.options['ms_ssim_loss']:
# TODO - Done
src_loss += K.mean(10 * bg_style_power * MsSSIM(max_value=1.0, power_factors=(1.0,))(psd_target_dst_anti_masked, target_dst_anti_masked))
src_loss += K.mean(10 * bg_style_power * MsSSIM(max_value=1.0)(psd_target_dst_anti_masked, target_dst_anti_masked))
else:
src_loss += K.mean( (10*bg_style_power)*dssim(kernel_size=int(resolution/11.6),max_value=1.0)( psd_target_dst_anti_masked, target_dst_anti_masked ))
src_loss += K.mean( (10*bg_style_power)*K.square( psd_target_dst_anti_masked - target_dst_anti_masked ))
if self.options['ms_ssim_loss']:
# TODO - Done
dst_loss = K.mean(10 * MsSSIM(max_value=1.0, power_factors=(1.0,))(target_dst_masked_opt, pred_dst_dst_masked_opt))
dst_loss = K.mean(10 * MsSSIM(max_value=1.0)(target_dst_masked_opt, pred_dst_dst_masked_opt))
else:
dst_loss = K.mean( 10*dssim(kernel_size=int(resolution/11.6),max_value=1.0)(target_dst_masked_opt, pred_dst_dst_masked_opt) )
dst_loss += K.mean( 10*K.square( target_dst_masked_opt - pred_dst_dst_masked_opt ) )
@ -533,8 +533,8 @@ class SAEHDModel(ModelBase):
if self.options['learn_mask']:
if self.options['ms_ssim_loss']:
# TODO - Done
src_mask_loss = K.mean(MsSSIM(max_value=1.0, power_factors=(1.0,))(self.model.target_srcm, self.model.pred_src_srcm))
dst_mask_loss = K.mean(MsSSIM(max_value=1.0, power_factors=(1.0,))(self.model.target_dstm, self.model.pred_dst_dstm))
src_mask_loss = K.mean(MsSSIM(max_value=1.0)(self.model.target_srcm, self.model.pred_src_srcm))
dst_mask_loss = K.mean(MsSSIM(max_value=1.0)(self.model.target_dstm, self.model.pred_dst_dstm))
else:
src_mask_loss = K.mean(K.square(self.model.target_srcm-self.model.pred_src_srcm))
dst_mask_loss = K.mean(K.square(self.model.target_dstm-self.model.pred_dst_dstm))

View file

@ -365,6 +365,7 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
k1=self.k1, k2=self.k2)
loss = (1.0 - mssim_val) / 2.0
return loss
else:
loss = 0.0
# im_size = K.shape(y_pred)[-2]
for i, weight in enumerate(self.power_factors):