mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-22 22:34:25 -07:00
more debugging
This commit is contained in:
parent
e374a84943
commit
39446f6188
2 changed files with 14 additions and 13 deletions
|
@ -478,7 +478,7 @@ class SAEHDModel(ModelBase):
|
||||||
|
|
||||||
if self.options['ms_ssim_loss']:
|
if self.options['ms_ssim_loss']:
|
||||||
# TODO - Done
|
# TODO - Done
|
||||||
src_loss = K.mean(10 * MsSSIM(max_value=1.0, power_factors=(1.0,))(target_src_masked_opt, pred_src_src_masked_opt))
|
src_loss = K.mean(10 * MsSSIM(max_value=1.0)(target_src_masked_opt, pred_src_src_masked_opt))
|
||||||
else:
|
else:
|
||||||
src_loss = K.mean ( 10*dssim(kernel_size=int(resolution/11.6),max_value=1.0)( target_src_masked_opt, pred_src_src_masked_opt) )
|
src_loss = K.mean ( 10*dssim(kernel_size=int(resolution/11.6),max_value=1.0)( target_src_masked_opt, pred_src_src_masked_opt) )
|
||||||
src_loss += K.mean ( 10*K.square( target_src_masked_opt - pred_src_src_masked_opt ) )
|
src_loss += K.mean ( 10*K.square( target_src_masked_opt - pred_src_src_masked_opt ) )
|
||||||
|
@ -495,14 +495,14 @@ class SAEHDModel(ModelBase):
|
||||||
if bg_style_power != 0:
|
if bg_style_power != 0:
|
||||||
if self.options['ms_ssim_loss']:
|
if self.options['ms_ssim_loss']:
|
||||||
# TODO - Done
|
# TODO - Done
|
||||||
src_loss += K.mean(10 * bg_style_power * MsSSIM(max_value=1.0, power_factors=(1.0,))(psd_target_dst_anti_masked, target_dst_anti_masked))
|
src_loss += K.mean(10 * bg_style_power * MsSSIM(max_value=1.0)(psd_target_dst_anti_masked, target_dst_anti_masked))
|
||||||
else:
|
else:
|
||||||
src_loss += K.mean( (10*bg_style_power)*dssim(kernel_size=int(resolution/11.6),max_value=1.0)( psd_target_dst_anti_masked, target_dst_anti_masked ))
|
src_loss += K.mean( (10*bg_style_power)*dssim(kernel_size=int(resolution/11.6),max_value=1.0)( psd_target_dst_anti_masked, target_dst_anti_masked ))
|
||||||
src_loss += K.mean( (10*bg_style_power)*K.square( psd_target_dst_anti_masked - target_dst_anti_masked ))
|
src_loss += K.mean( (10*bg_style_power)*K.square( psd_target_dst_anti_masked - target_dst_anti_masked ))
|
||||||
|
|
||||||
if self.options['ms_ssim_loss']:
|
if self.options['ms_ssim_loss']:
|
||||||
# TODO - Done
|
# TODO - Done
|
||||||
dst_loss = K.mean(10 * MsSSIM(max_value=1.0, power_factors=(1.0,))(target_dst_masked_opt, pred_dst_dst_masked_opt))
|
dst_loss = K.mean(10 * MsSSIM(max_value=1.0)(target_dst_masked_opt, pred_dst_dst_masked_opt))
|
||||||
else:
|
else:
|
||||||
dst_loss = K.mean( 10*dssim(kernel_size=int(resolution/11.6),max_value=1.0)(target_dst_masked_opt, pred_dst_dst_masked_opt) )
|
dst_loss = K.mean( 10*dssim(kernel_size=int(resolution/11.6),max_value=1.0)(target_dst_masked_opt, pred_dst_dst_masked_opt) )
|
||||||
dst_loss += K.mean( 10*K.square( target_dst_masked_opt - pred_dst_dst_masked_opt ) )
|
dst_loss += K.mean( 10*K.square( target_dst_masked_opt - pred_dst_dst_masked_opt ) )
|
||||||
|
@ -533,8 +533,8 @@ class SAEHDModel(ModelBase):
|
||||||
if self.options['learn_mask']:
|
if self.options['learn_mask']:
|
||||||
if self.options['ms_ssim_loss']:
|
if self.options['ms_ssim_loss']:
|
||||||
# TODO - Done
|
# TODO - Done
|
||||||
src_mask_loss = K.mean(MsSSIM(max_value=1.0, power_factors=(1.0,))(self.model.target_srcm, self.model.pred_src_srcm))
|
src_mask_loss = K.mean(MsSSIM(max_value=1.0)(self.model.target_srcm, self.model.pred_src_srcm))
|
||||||
dst_mask_loss = K.mean(MsSSIM(max_value=1.0, power_factors=(1.0,))(self.model.target_dstm, self.model.pred_dst_dstm))
|
dst_mask_loss = K.mean(MsSSIM(max_value=1.0)(self.model.target_dstm, self.model.pred_dst_dstm))
|
||||||
else:
|
else:
|
||||||
src_mask_loss = K.mean(K.square(self.model.target_srcm-self.model.pred_src_srcm))
|
src_mask_loss = K.mean(K.square(self.model.target_srcm-self.model.pred_src_srcm))
|
||||||
dst_mask_loss = K.mean(K.square(self.model.target_dstm-self.model.pred_dst_dstm))
|
dst_mask_loss = K.mean(K.square(self.model.target_dstm-self.model.pred_dst_dstm))
|
||||||
|
|
|
@ -365,14 +365,15 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
|
||||||
k1=self.k1, k2=self.k2)
|
k1=self.k1, k2=self.k2)
|
||||||
loss = (1.0 - mssim_val) / 2.0
|
loss = (1.0 - mssim_val) / 2.0
|
||||||
return loss
|
return loss
|
||||||
loss = 0.0
|
else:
|
||||||
# im_size = K.shape(y_pred)[-2]
|
loss = 0.0
|
||||||
for i, weight in enumerate(self.power_factors):
|
# im_size = K.shape(y_pred)[-2]
|
||||||
size = 2**i
|
for i, weight in enumerate(self.power_factors):
|
||||||
dssim = self.dssim(K.pool2d(y_true, (size, size), strides=(size, size), pool_mode='avg'),
|
size = 2**i
|
||||||
K.pool2d(y_pred, (size, size), strides=(size, size), pool_mode='avg'))
|
dssim = self.dssim(K.pool2d(y_true, (size, size), strides=(size, size), pool_mode='avg'),
|
||||||
loss += dssim**weight
|
K.pool2d(y_pred, (size, size), strides=(size, size), pool_mode='avg'))
|
||||||
return loss/len(self.power_factors)
|
loss += dssim**weight
|
||||||
|
return loss/len(self.power_factors)
|
||||||
|
|
||||||
nnlib.MsSSIM = MsSSIM
|
nnlib.MsSSIM = MsSSIM
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue