DFL-2.0 initial branch commit

This commit is contained in:
Colombo 2020-01-21 18:43:39 +04:00
parent 52a67a61b3
commit 38b85108b3
154 changed files with 5251 additions and 9414 deletions

View file

@ -5,10 +5,11 @@ import traceback
import cv2
import numpy as np
from core import mplib
from core.joblib import SubprocessGenerator, ThisThreadGenerator
from facelib import LandmarksProcessor
from samplelib import (SampleGeneratorBase, SampleHost, SampleProcessor,
SampleType)
from utils import iter_utils, mp_utils
'''
@ -19,12 +20,12 @@ output_sample_types = [
]
'''
class SampleGeneratorFacePerson(SampleGeneratorBase):
def __init__ (self, samples_path, debug=False, batch_size=1,
sample_process_options=SampleProcessor.Options(),
output_sample_types=[],
def __init__ (self, samples_path, debug=False, batch_size=1,
sample_process_options=SampleProcessor.Options(),
output_sample_types=[],
person_id_mode=1,
**kwargs):
super().__init__(samples_path, debug, batch_size)
self.sample_process_options = sample_process_options
self.output_sample_types = output_sample_types
@ -39,13 +40,13 @@ class SampleGeneratorFacePerson(SampleGeneratorBase):
if self.samples_len == 0:
raise ValueError('No training data provided.')
unique_person_names = { sample.person_name for sample in samples }
persons_name_idxs = { person_name : [] for person_name in unique_person_names }
for i,sample in enumerate(samples):
persons_name_idxs[sample.person_name].append (i)
unique_person_names = { sample.person_name for sample in samples }
persons_name_idxs = { person_name : [] for person_name in unique_person_names }
for i,sample in enumerate(samples):
persons_name_idxs[sample.person_name].append (i)
indexes2D = [ persons_name_idxs[person_name] for person_name in unique_person_names ]
index2d_host = mp_utils.Index2DHost(indexes2D)
index2d_host = mplib.Index2DHost(indexes2D)
if self.debug:
self.generators_count = 1
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, (samples_host.create_cli(), index2d_host.create_cli(),) )]
@ -54,11 +55,7 @@ class SampleGeneratorFacePerson(SampleGeneratorBase):
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (samples_host.create_cli(), index2d_host.create_cli(),), start_now=True ) for i in range(self.generators_count) ]
self.generator_counter = -1
#overridable
def get_total_sample_count(self):
return self.samples_len
def __iter__(self):
return self
@ -67,14 +64,14 @@ class SampleGeneratorFacePerson(SampleGeneratorBase):
generator = self.generators[self.generator_counter % len(self.generators) ]
return next(generator)
def batch_func(self, param ):
def batch_func(self, param ):
samples, index2d_host, = param
bs = self.batch_size
while True:
person_idxs = index2d_host.get_1D(bs)
person_idxs = index2d_host.get_1D(bs)
samples_idxs = index2d_host.get_2D(person_idxs, 1)
batches = None
for n_batch in range(bs):
person_id = person_idxs[n_batch]
@ -85,10 +82,10 @@ class SampleGeneratorFacePerson(SampleGeneratorBase):
x, = SampleProcessor.process ([sample], self.sample_process_options, self.output_sample_types, self.debug)
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
if batches is None:
batches = [ [] for _ in range(len(x)) ]
batches += [ [] ]
i_person_id = len(batches)-1
@ -96,9 +93,9 @@ class SampleGeneratorFacePerson(SampleGeneratorBase):
batches[i].append ( x[i] )
batches[i_person_id].append ( np.array([person_id]) )
yield [ np.array(batch) for batch in batches]
@staticmethod
def get_person_id_max_count(samples_path):
return SampleHost.get_person_id_max_count(samples_path)
@ -110,43 +107,43 @@ if self.person_id_mode==1:
shuffle_idxs = []
elif self.person_id_mode==2:
persons_count = len(samples)
person_idxs = []
for j in range(persons_count):
for i in range(j+1,persons_count):
person_idxs += [ [i,j] ]
shuffle_person_idxs = []
samples_idxs = [None]*persons_count
shuffle_idxs = [None]*persons_count
for i in range(persons_count):
samples_idxs[i] = [*range(len(samples[i]))]
shuffle_idxs[i] = []
elif self.person_id_mode==3:
persons_count = len(samples)
person_idxs = [ *range(persons_count) ]
shuffle_person_idxs = []
samples_idxs = [None]*persons_count
shuffle_idxs = [None]*persons_count
for i in range(persons_count):
samples_idxs[i] = [*range(len(samples[i]))]
shuffle_idxs[i] = []
if self.person_id_mode==2:
if self.person_id_mode==2:
if len(shuffle_person_idxs) == 0:
shuffle_person_idxs = person_idxs.copy()
np.random.shuffle(shuffle_person_idxs)
person_ids = shuffle_person_idxs.pop()
batches = None
for n_batch in range(self.batch_size):
if self.person_id_mode==1:
if len(shuffle_idxs) == 0:
shuffle_idxs = samples_idxs.copy()
@ -154,7 +151,7 @@ if self.person_id_mode==2:
idx = shuffle_idxs.pop()
sample = samples[ idx ]
try:
x, = SampleProcessor.process ([sample], self.sample_process_options, self.output_sample_types, self.debug)
except:
@ -165,7 +162,7 @@ if self.person_id_mode==2:
if batches is None:
batches = [ [] for _ in range(len(x)) ]
batches += [ [] ]
i_person_id = len(batches)-1
@ -174,30 +171,30 @@ if self.person_id_mode==2:
batches[i_person_id].append ( np.array([sample.person_id]) )
elif self.person_id_mode==2:
person_id1, person_id2 = person_ids
if len(shuffle_idxs[person_id1]) == 0:
shuffle_idxs[person_id1] = samples_idxs[person_id1].copy()
np.random.shuffle(shuffle_idxs[person_id1])
idx = shuffle_idxs[person_id1].pop()
sample1 = samples[person_id1][idx]
if len(shuffle_idxs[person_id2]) == 0:
shuffle_idxs[person_id2] = samples_idxs[person_id2].copy()
np.random.shuffle(shuffle_idxs[person_id2])
idx = shuffle_idxs[person_id2].pop()
sample2 = samples[person_id2][idx]
if sample1 is not None and sample2 is not None:
try:
x1, = SampleProcessor.process ([sample1], self.sample_process_options, self.output_sample_types, self.debug)
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample1.filename, traceback.format_exc() ) )
try:
x2, = SampleProcessor.process ([sample2], self.sample_process_options, self.output_sample_types, self.debug)
except:
@ -205,50 +202,50 @@ if self.person_id_mode==2:
x1_len = len(x1)
if batches is None:
batches = [ [] for _ in range(x1_len) ]
batches = [ [] for _ in range(x1_len) ]
batches += [ [] ]
i_person_id1 = len(batches)-1
batches += [ [] for _ in range(len(x2)) ]
batches += [ [] for _ in range(len(x2)) ]
batches += [ [] ]
i_person_id2 = len(batches)-1
for i in range(x1_len):
batches[i].append ( x1[i] )
for i in range(len(x2)):
batches[x1_len+1+i].append ( x2[i] )
batches[i_person_id1].append ( np.array([sample1.person_id]) )
batches[i_person_id2].append ( np.array([sample2.person_id]) )
elif self.person_id_mode==3:
elif self.person_id_mode==3:
if len(shuffle_person_idxs) == 0:
shuffle_person_idxs = person_idxs.copy()
np.random.shuffle(shuffle_person_idxs)
person_id = shuffle_person_idxs.pop()
if len(shuffle_idxs[person_id]) == 0:
shuffle_idxs[person_id] = samples_idxs[person_id].copy()
np.random.shuffle(shuffle_idxs[person_id])
idx = shuffle_idxs[person_id].pop()
sample1 = samples[person_id][idx]
if len(shuffle_idxs[person_id]) == 0:
shuffle_idxs[person_id] = samples_idxs[person_id].copy()
np.random.shuffle(shuffle_idxs[person_id])
idx = shuffle_idxs[person_id].pop()
sample2 = samples[person_id][idx]
if sample1 is not None and sample2 is not None:
try:
x1, = SampleProcessor.process ([sample1], self.sample_process_options, self.output_sample_types, self.debug)
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample1.filename, traceback.format_exc() ) )
try:
x2, = SampleProcessor.process ([sample2], self.sample_process_options, self.output_sample_types, self.debug)
except:
@ -256,21 +253,21 @@ if self.person_id_mode==2:
x1_len = len(x1)
if batches is None:
batches = [ [] for _ in range(x1_len) ]
batches = [ [] for _ in range(x1_len) ]
batches += [ [] ]
i_person_id1 = len(batches)-1
batches += [ [] for _ in range(len(x2)) ]
batches += [ [] for _ in range(len(x2)) ]
batches += [ [] ]
i_person_id2 = len(batches)-1
for i in range(x1_len):
batches[i].append ( x1[i] )
for i in range(len(x2)):
batches[x1_len+1+i].append ( x2[i] )
batches[i_person_id1].append ( np.array([sample1.person_id]) )
batches[i_person_id2].append ( np.array([sample2.person_id]) )
"""
batches[i_person_id2].append ( np.array([sample2.person_id]) )
"""