DFL-2.0 initial branch commit

This commit is contained in:
Colombo 2020-01-21 18:43:39 +04:00
parent 52a67a61b3
commit 38b85108b3
154 changed files with 5251 additions and 9414 deletions

View file

@ -1,162 +1,179 @@
import colorsys
import inspect
import json
import operator
import os
import pickle
import shutil
import tempfile
import time
from pathlib import Path
import cv2
import numpy as np
import imagelib
from interact import interact as io
from nnlib import nnlib
from core import imagelib
from core.interact import interact as io
from core.leras import nn
from samplelib import SampleGeneratorBase
from utils import Path_utils, std_utils
from utils.cv2_utils import *
from core import pathex
from core.cv2ex import *
'''
You can implement your own model. Check examples.
'''
class ModelBase(object):
def __init__(self, model_path, training_data_src_path=None, training_data_dst_path=None, pretraining_data_path=None, is_training=False, debug = False, no_preview=False, device_args = None,
ask_enable_autobackup=True,
ask_write_preview_history=True,
ask_target_iter=True,
ask_batch_size=True,
ask_random_flip=True, **kwargs):
device_args['force_gpu_idx'] = device_args.get('force_gpu_idx',-1)
device_args['cpu_only'] = True if debug else device_args.get('cpu_only',False)
if device_args['force_gpu_idx'] == -1 and not device_args['cpu_only']:
idxs_names_list = nnlib.device.getValidDevicesIdxsWithNamesList()
if len(idxs_names_list) > 1:
io.log_info ("You have multi GPUs in a system: ")
for idx, name in idxs_names_list:
io.log_info ("[%d] : %s" % (idx, name) )
device_args['force_gpu_idx'] = io.input_int("Which GPU idx to choose? ( skip: best GPU ) : ", -1, [ x[0] for x in idxs_names_list] )
self.device_args = device_args
self.device_config = nnlib.DeviceConfig(allow_growth=True, **self.device_args)
io.log_info ("Loading model...")
self.model_path = model_path
self.model_data_path = Path( self.get_strpath_storage_for_file('data.dat') )
def __init__(self, is_training=False,
saved_models_path=None,
training_data_src_path=None,
training_data_dst_path=None,
pretraining_data_path=None,
pretrained_model_path=None,
no_preview=False,
force_model_name=None,
force_gpu_idxs=None,
cpu_only=False,
debug=False,
**kwargs):
self.is_training = is_training
self.saved_models_path = saved_models_path
self.training_data_src_path = training_data_src_path
self.training_data_dst_path = training_data_dst_path
self.pretraining_data_path = pretraining_data_path
self.debug = debug
self.pretrained_model_path = pretrained_model_path
self.no_preview = no_preview
self.is_training_mode = is_training
self.debug = debug
self.model_class_name = model_class_name = Path(inspect.getmodule(self).__file__).parent.name.rsplit("_", 1)[1]
if force_model_name is not None:
self.model_name = force_model_name
else:
while True:
# gather all model dat files
saved_models_names = []
for filepath in pathex.get_file_paths(saved_models_path):
filepath_name = filepath.name
if filepath_name.endswith(f'{model_class_name}_data.dat'):
saved_models_names += [ (filepath_name.split('_')[0], os.path.getmtime(filepath)) ]
# sort by modified datetime
saved_models_names = sorted(saved_models_names, key=operator.itemgetter(1), reverse=True )
saved_models_names = [ x[0] for x in saved_models_names ]
if len(saved_models_names) != 0:
io.log_info ("Choose one of saved models, or enter a name to create a new model.")
io.log_info ("[r] : rename")
io.log_info ("[d] : delete")
io.log_info ("")
for i, model_name in enumerate(saved_models_names):
s = f"[{i}] : {model_name} "
if i == 0:
s += "- latest"
io.log_info (s)
inp = io.input_str(f"", "0", show_default_value=False )
model_idx = -1
try:
model_idx = np.clip ( int(inp), 0, len(saved_models_names)-1 )
except:
pass
if model_idx == -1:
if len(inp) == 1:
is_rename = inp[0] == 'r'
is_delete = inp[0] == 'd'
if is_rename or is_delete:
if len(saved_models_names) != 0:
if is_rename:
name = io.input_str(f"Enter the name of the model you want to rename")
elif is_delete:
name = io.input_str(f"Enter the name of the model you want to delete")
if name in saved_models_names:
if is_rename:
new_model_name = io.input_str(f"Enter new name of the model")
for filepath in pathex.get_file_paths(saved_models_path):
filepath_name = filepath.name
model_filename, remain_filename = filepath_name.split('_', 1)
if model_filename == name:
if is_rename:
new_filepath = filepath.parent / ( new_model_name + '_' + remain_filename )
filepath.rename (new_filepath)
elif is_delete:
filepath.unlink()
continue
self.model_name = inp
else:
self.model_name = saved_models_names[model_idx]
else:
self.model_name = io.input_str(f"No saved models found. Enter a name of a new model", "noname")
break
self.model_name = self.model_name + '_' + self.model_class_name
self.iter = 0
self.options = {}
self.loss_history = []
self.sample_for_preview = None
self.choosed_gpu_indexes = None
model_data = {}
self.model_data_path = Path( self.get_strpath_storage_for_file('data.dat') )
if self.model_data_path.exists():
io.log_info (f"Loading {self.model_name} model...")
model_data = pickle.loads ( self.model_data_path.read_bytes() )
self.iter = max( model_data.get('iter',0), model_data.get('epoch',0) )
if 'epoch' in self.options:
self.options.pop('epoch')
self.iter = model_data.get('iter',0)
if self.iter != 0:
self.options = model_data['options']
self.loss_history = model_data.get('loss_history', [])
self.sample_for_preview = model_data.get('sample_for_preview', None)
self.choosed_gpu_indexes = model_data.get('choosed_gpu_indexes', None)
ask_override = self.is_training_mode and self.iter != 0 and io.input_in_time ("Press enter in 2 seconds to override model settings.", 5 if io.is_colab() else 2 )
yn_str = {True:'y',False:'n'}
if self.iter == 0:
if self.is_first_run():
io.log_info ("\nModel first run.")
if ask_enable_autobackup and (self.iter == 0 or ask_override):
default_autobackup = False if self.iter == 0 else self.options.get('autobackup',False)
self.options['autobackup'] = io.input_bool("Enable autobackup? (y/n ?:help skip:%s) : " % (yn_str[default_autobackup]) , default_autobackup, help_message="Autobackup model files with preview every hour for last 15 hours. Latest backup located in model/<>_autobackups/01")
else:
self.options['autobackup'] = self.options.get('autobackup', False)
self.device_config = nn.DeviceConfig.GPUIndexes( force_gpu_idxs or nn.ask_choose_device_idxs(suggest_best_multi_gpu=True)) \
if not cpu_only else nn.DeviceConfig.CPU()
if ask_write_preview_history and (self.iter == 0 or ask_override):
default_write_preview_history = False if self.iter == 0 else self.options.get('write_preview_history',False)
self.options['write_preview_history'] = io.input_bool("Write preview history? (y/n ?:help skip:%s) : " % (yn_str[default_write_preview_history]) , default_write_preview_history, help_message="Preview history will be writed to <ModelName>_history folder.")
else:
self.options['write_preview_history'] = self.options.get('write_preview_history', False)
nn.initialize(self.device_config)
if (self.iter == 0 or ask_override) and self.options['write_preview_history'] and io.is_support_windows():
choose_preview_history = io.input_bool("Choose image for the preview history? (y/n skip:%s) : " % (yn_str[False]) , False)
elif (self.iter == 0 or ask_override) and self.options['write_preview_history'] and io.is_colab():
choose_preview_history = io.input_bool("Randomly choose new image for preview history? (y/n ?:help skip:%s) : " % (yn_str[False]), False, help_message="Preview image history will stay stuck with old faces if you reuse the same model on different celebs. Choose no unless you are changing src/dst to a new person")
else:
choose_preview_history = False
####
self.default_options_path = saved_models_path / f'{self.model_class_name}_default_options.dat'
self.default_options = {}
if self.default_options_path.exists():
try:
self.default_options = pickle.loads ( self.default_options_path.read_bytes() )
except:
pass
if ask_target_iter:
if (self.iter == 0 or ask_override):
self.options['target_iter'] = max(0, io.input_int("Target iteration (skip:unlimited/default) : ", 0))
else:
self.options['target_iter'] = max(model_data.get('target_iter',0), self.options.get('target_epoch',0))
if 'target_epoch' in self.options:
self.options.pop('target_epoch')
self.choose_preview_history = False
self.batch_size = self.load_or_def_option('batch_size', 1)
#####
if ask_batch_size and (self.iter == 0 or ask_override):
default_batch_size = 0 if self.iter == 0 else self.options.get('batch_size',0)
self.batch_size = max(0, io.input_int("Batch_size (?:help skip:%d) : " % (default_batch_size), default_batch_size, help_message="Larger batch size is better for NN's generalization, but it can cause Out of Memory error. Tune this value for your videocard manually."))
else:
self.batch_size = self.options.get('batch_size', 0)
if ask_random_flip:
default_random_flip = self.options.get('random_flip', True)
if (self.iter == 0 or ask_override):
self.options['random_flip'] = io.input_bool(f"Flip faces randomly? (y/n ?:help skip:{yn_str[default_random_flip]}) : ", default_random_flip, help_message="Predicted face will look more naturally without this option, but src faceset should cover all face directions as dst faceset.")
else:
self.options['random_flip'] = self.options.get('random_flip', default_random_flip)
self.on_initialize_options()
if self.is_first_run():
# save as default options only for first run model initialize
self.default_options_path.write_bytes( pickle.dumps (self.options) )
self.autobackup = self.options.get('autobackup', False)
if not self.autobackup and 'autobackup' in self.options:
self.options.pop('autobackup')
self.write_preview_history = self.options.get('write_preview_history', False)
if not self.write_preview_history and 'write_preview_history' in self.options:
self.options.pop('write_preview_history')
self.target_iter = self.options.get('target_iter',0)
if self.target_iter == 0 and 'target_iter' in self.options:
self.options.pop('target_iter')
#self.batch_size = self.options.get('batch_size',0)
self.sort_by_yaw = self.options.get('sort_by_yaw',False)
self.random_flip = self.options.get('random_flip',True)
self.onInitializeOptions(self.iter == 0, ask_override)
nnlib.import_all(self.device_config)
self.keras = nnlib.keras
self.K = nnlib.keras.backend
self.onInitialize()
self.on_initialize()
self.options['batch_size'] = self.batch_size
if self.debug or self.batch_size == 0:
self.batch_size = 1
if self.is_training_mode:
if self.device_args['force_gpu_idx'] == -1:
self.preview_history_path = self.model_path / ( '%s_history' % (self.get_model_name()) )
self.autobackups_path = self.model_path / ( '%s_autobackups' % (self.get_model_name()) )
else:
self.preview_history_path = self.model_path / ( '%d_%s_history' % (self.device_args['force_gpu_idx'], self.get_model_name()) )
self.autobackups_path = self.model_path / ( '%d_%s_autobackups' % (self.device_args['force_gpu_idx'], self.get_model_name()) )
if self.is_training:
self.preview_history_path = self.saved_models_path / ( f'{self.get_model_name()}_history' )
self.autobackups_path = self.saved_models_path / ( f'{self.get_model_name()}_autobackups' )
if self.autobackup:
self.autobackup_current_hour = time.localtime().tm_hour
@ -169,7 +186,7 @@ class ModelBase(object):
self.preview_history_path.mkdir(exist_ok=True)
else:
if self.iter == 0:
for filename in Path_utils.get_image_paths(self.preview_history_path):
for filename in pathex.get_image_paths(self.preview_history_path):
Path(filename).unlink()
if self.generator_list is None:
@ -179,15 +196,15 @@ class ModelBase(object):
if not isinstance(generator, SampleGeneratorBase):
raise ValueError('training data generator is not subclass of SampleGeneratorBase')
if self.sample_for_preview is None or choose_preview_history:
if choose_preview_history and io.is_support_windows():
if self.sample_for_preview is None or self.choose_preview_history:
if self.choose_preview_history and io.is_support_windows():
io.log_info ("Choose image for the preview history. [p] - next. [enter] - confirm.")
wnd_name = "[p] - next. [enter] - confirm."
io.named_window(wnd_name)
io.capture_keys(wnd_name)
choosed = False
while not choosed:
self.sample_for_preview = self.generate_next_sample()
self.sample_for_preview = self.generate_next_samples()
preview = self.get_static_preview()
io.show_image( wnd_name, (preview*255).astype(np.uint8) )
@ -207,73 +224,66 @@ class ModelBase(object):
io.destroy_window(wnd_name)
else:
self.sample_for_preview = self.generate_next_sample()
self.sample_for_preview = self.generate_next_samples()
try:
self.get_static_preview()
except:
self.sample_for_preview = self.generate_next_sample()
self.sample_for_preview = self.generate_next_samples()
self.last_sample = self.sample_for_preview
###Generate text summary of model hyperparameters
#Find the longest key name and value string. Used as column widths.
width_name = max([len(k) for k in self.options.keys()] + [17]) + 1 # Single space buffer to left edge. Minimum of 17, the length of the longest static string used "Current iteration"
width_value = max([len(str(x)) for x in self.options.values()] + [len(str(self.iter)), len(self.get_model_name())]) + 1 # Single space buffer to right edge
if not self.device_config.cpu_only: #Check length of GPU names
width_value = max([len(nnlib.device.getDeviceName(idx))+1 for idx in self.device_config.gpu_idxs] + [width_value])
width_total = width_name + width_value + 2 #Plus 2 for ": "
io.log_info( self.get_summary_text() )
model_summary_text = []
model_summary_text += [f'=={" Model Summary ":=^{width_total}}=='] # Model/status summary
model_summary_text += [f'=={" "*width_total}==']
model_summary_text += [f'=={"Model name": >{width_name}}: {self.get_model_name(): <{width_value}}=='] # Name
model_summary_text += [f'=={" "*width_total}==']
model_summary_text += [f'=={"Current iteration": >{width_name}}: {str(self.iter): <{width_value}}=='] # Iter
model_summary_text += [f'=={" "*width_total}==']
def load_or_def_option(self, name, def_value):
options_val = self.options.get(name, None)
if options_val is not None:
return options_val
model_summary_text += [f'=={" Model Options ":-^{width_total}}=='] # Model options
model_summary_text += [f'=={" "*width_total}==']
for key in self.options.keys():
model_summary_text += [f'=={key: >{width_name}}: {str(self.options[key]): <{width_value}}=='] # self.options key/value pairs
model_summary_text += [f'=={" "*width_total}==']
def_opt_val = self.default_options.get(name, None)
if def_opt_val is not None:
return def_opt_val
model_summary_text += [f'=={" Running On ":-^{width_total}}=='] # Training hardware info
model_summary_text += [f'=={" "*width_total}==']
if self.device_config.multi_gpu:
model_summary_text += [f'=={"Using multi_gpu": >{width_name}}: {"True": <{width_value}}=='] # multi_gpu
model_summary_text += [f'=={" "*width_total}==']
if self.device_config.cpu_only:
model_summary_text += [f'=={"Using device": >{width_name}}: {"CPU": <{width_value}}=='] # cpu_only
else:
for idx in self.device_config.gpu_idxs:
model_summary_text += [f'=={"Device index": >{width_name}}: {idx: <{width_value}}=='] # GPU hardware device index
model_summary_text += [f'=={"Name": >{width_name}}: {nnlib.device.getDeviceName(idx): <{width_value}}=='] # GPU name
vram_str = f'{nnlib.device.getDeviceVRAMTotalGb(idx):.2f}GB' # GPU VRAM - Formated as #.## (or ##.##)
model_summary_text += [f'=={"VRAM": >{width_name}}: {vram_str: <{width_value}}==']
model_summary_text += [f'=={" "*width_total}==']
model_summary_text += [f'=={"="*width_total}==']
return def_value
if not self.device_config.cpu_only and self.device_config.gpu_vram_gb[0] <= 2: # Low VRAM warning
model_summary_text += ["/!\\"]
model_summary_text += ["/!\\ WARNING:"]
model_summary_text += ["/!\\ You are using a GPU with 2GB or less VRAM. This may significantly reduce the quality of your result!"]
model_summary_text += ["/!\\ If training does not start, close all programs and try again."]
model_summary_text += ["/!\\ Also you can disable Windows Aero Desktop to increase available VRAM."]
model_summary_text += ["/!\\"]
def ask_override(self):
return self.is_training and self.iter != 0 and io.input_in_time ("Press enter in 2 seconds to override model settings.", 5 if io.is_colab() else 2 )
def ask_enable_autobackup(self):
default_autobackup = self.options['autobackup'] = self.load_or_def_option('autobackup', False)
self.options['autobackup'] = io.input_bool(f"Enable autobackup", default_autobackup, help_message="Autobackup model files with preview every hour for last 15 hours. Latest backup located in model/<>_autobackups/01")
def ask_write_preview_history(self):
default_write_preview_history = self.load_or_def_option('write_preview_history', False)
self.options['write_preview_history'] = io.input_bool(f"Write preview history", default_write_preview_history, help_message="Preview history will be writed to <ModelName>_history folder.")
if self.options['write_preview_history']:
if io.is_support_windows():
self.choose_preview_history = io.input_bool("Choose image for the preview history", False)
elif io.is_colab():
self.choose_preview_history = io.input_bool("Randomly choose new image for preview history", False, help_message="Preview image history will stay stuck with old faces if you reuse the same model on different celebs. Choose no unless you are changing src/dst to a new person")
def ask_target_iter(self):
default_target_iter = self.load_or_def_option('target_iter', 0)
self.options['target_iter'] = max(0, io.input_int("Target iteration", default_target_iter))
def ask_random_flip(self):
default_random_flip = self.load_or_def_option('random_flip', True)
self.options['random_flip'] = io.input_bool("Flip faces randomly", default_random_flip, help_message="Predicted face will look more naturally without this option, but src faceset should cover all face directions as dst faceset.")
def ask_batch_size(self, suggest_batch_size=None):
default_batch_size = self.load_or_def_option('batch_size', suggest_batch_size or self.batch_size)
self.batch_size = max(0, io.input_int("Batch_size", default_batch_size, help_message="Larger batch size is better for NN's generalization, but it can cause Out of Memory error. Tune this value for your videocard manually."))
model_summary_text = "\n".join (model_summary_text)
self.model_summary_text = model_summary_text
io.log_info(model_summary_text)
#overridable
def onInitializeOptions(self, is_first_run, ask_override):
def on_initialize_options(self):
pass
#overridable
def onInitialize(self):
def on_initialize(self):
'''
initialize your keras models
initialize your models
store and retrieve your model options in self.options['']
@ -283,12 +293,12 @@ class ModelBase(object):
#overridable
def onSave(self):
#save your keras models here
#save your models here
pass
#overridable
def onTrainOneIter(self, sample, generator_list):
#train your keras models here
#train your models here
#return array of losses
return ( ('loss_src', 0), ('loss_dst', 0) )
@ -301,42 +311,26 @@ class ModelBase(object):
#overridable if you want model name differs from folder name
def get_model_name(self):
return Path(inspect.getmodule(self).__file__).parent.name.rsplit("_", 1)[1]
return self.model_name
#overridable , return [ [model, filename],... ] list
def get_model_filename_list(self):
return []
#overridable
def get_ConverterConfig(self):
#return predictor_func, predictor_input_shape, ConverterConfig() for the model
def get_MergerConfig(self):
#return predictor_func, predictor_input_shape, MergerConfig() for the model
raise NotImplementedError
def get_pretraining_data_path(self):
return self.pretraining_data_path
def get_target_iter(self):
return self.target_iter
def is_reached_iter_goal(self):
return self.target_iter != 0 and self.iter >= self.target_iter
#multi gpu in keras actually is fake and doesn't work for training https://github.com/keras-team/keras/issues/11976
#def to_multi_gpu_model_if_possible (self, models_list):
# if len(self.device_config.gpu_idxs) > 1:
# #make batch_size to divide on GPU count without remainder
# self.batch_size = int( self.batch_size / len(self.device_config.gpu_idxs) )
# if self.batch_size == 0:
# self.batch_size = 1
# self.batch_size *= len(self.device_config.gpu_idxs)
#
# result = []
# for model in models_list:
# for i in range( len(model.output_names) ):
# model.output_names = 'output_%d' % (i)
# result += [ nnlib.keras.utils.multi_gpu_model( model, self.device_config.gpu_idxs ) ]
#
# return result
# else:
# return models_list
def get_previews(self):
return self.onGetPreview ( self.last_sample )
@ -345,21 +339,23 @@ class ModelBase(object):
def save(self):
summary_path = self.get_strpath_storage_for_file('summary.txt')
Path( summary_path ).write_text(self.model_summary_text)
Path( summary_path ).write_text( self.get_summary_text() )
self.onSave()
model_data = {
'iter': self.iter,
'options': self.options,
'loss_history': self.loss_history,
'sample_for_preview' : self.sample_for_preview
'sample_for_preview' : self.sample_for_preview,
'choosed_gpu_indexes' : self.choosed_gpu_indexes,
}
self.model_data_path.write_bytes( pickle.dumps(model_data) )
bckp_filename_list = [ self.get_strpath_storage_for_file(filename) for _, filename in self.get_model_filename_list() ]
bckp_filename_list += [ str(summary_path), str(self.model_data_path) ]
pathex.write_bytes_safe (self.model_data_path, pickle.dumps(model_data) )
if self.autobackup:
bckp_filename_list = [ self.get_strpath_storage_for_file(filename) for _, filename in self.get_model_filename_list() ]
bckp_filename_list += [ str(summary_path), str(self.model_data_path) ]
current_hour = time.localtime().tm_hour
if self.autobackup_current_hour != current_hour:
self.autobackup_current_hour = current_hour
@ -373,10 +369,10 @@ class ModelBase(object):
if idx_backup_path.exists():
if i == 15:
Path_utils.delete_all_files(idx_backup_path)
pathex.delete_all_files(idx_backup_path)
else:
next_idx_packup_path.mkdir(exist_ok=True)
Path_utils.move_all_files (idx_backup_path, next_idx_packup_path)
pathex.move_all_files (idx_backup_path, next_idx_packup_path)
if i == 1:
idx_backup_path.mkdir(exist_ok=True)
@ -394,97 +390,6 @@ class ModelBase(object):
img = (np.concatenate ( [preview_lh, preview], axis=0 ) * 255).astype(np.uint8)
cv2_imwrite (filepath, img )
def load_weights_safe(self, model_filename_list, optimizer_filename_list=[]):
exec(nnlib.code_import_all, locals(), globals())
loaded = []
not_loaded = []
for mf in model_filename_list:
model, filename = mf
filename = self.get_strpath_storage_for_file(filename)
if Path(filename).exists():
loaded += [ mf ]
if issubclass(model.__class__, keras.optimizers.Optimizer):
opt = model
try:
with open(filename, "rb") as f:
fd = pickle.loads(f.read())
weights = fd.get('weights', None)
if weights is not None:
opt.set_weights(weights)
except Exception as e:
print ("Unable to load ", filename)
else:
model.load_weights(filename)
else:
not_loaded += [ mf ]
return loaded, not_loaded
def save_weights_safe(self, model_filename_list):
exec(nnlib.code_import_all, locals(), globals())
for model, filename in model_filename_list:
filename = self.get_strpath_storage_for_file(filename) + '.tmp'
if issubclass(model.__class__, keras.optimizers.Optimizer):
opt = model
try:
fd = {}
symbolic_weights = getattr(opt, 'weights')
if symbolic_weights:
fd['weights'] = self.K.batch_get_value(symbolic_weights)
with open(filename, 'wb') as f:
f.write( pickle.dumps(fd) )
except Exception as e:
print ("Unable to save ", filename)
else:
model.save_weights( filename)
rename_list = model_filename_list
"""
#unused
, optimizer_filename_list=[]
if len(optimizer_filename_list) != 0:
opt_filename = self.get_strpath_storage_for_file('opt.h5')
try:
d = {}
for opt, filename in optimizer_filename_list:
fd = {}
symbolic_weights = getattr(opt, 'weights')
if symbolic_weights:
fd['weights'] = self.K.batch_get_value(symbolic_weights)
d[filename] = fd
with open(opt_filename+'.tmp', 'wb') as f:
f.write( pickle.dumps(d) )
rename_list += [('', 'opt.h5')]
except Exception as e:
print ("Unable to save ", opt_filename)
"""
for _, filename in rename_list:
filename = self.get_strpath_storage_for_file(filename)
source_filename = Path(filename+'.tmp')
if source_filename.exists():
target_filename = Path(filename)
if target_filename.exists():
target_filename.unlink()
source_filename.rename ( str(target_filename) )
def debug_one_iter(self):
images = []
for generator in self.generator_list:
@ -494,19 +399,15 @@ class ModelBase(object):
return imagelib.equalize_and_stack_square (images)
def generate_next_sample(self):
return [ generator.generate_next() for generator in self.generator_list]
#overridable
def on_success_train_one_iter(self):
pass
def generate_next_samples(self):
self.last_sample = sample = [ generator.generate_next() for generator in self.generator_list]
return sample
def train_one_iter(self):
sample = self.generate_next_sample()
iter_time = time.time()
losses = self.onTrainOneIter(sample, self.generator_list)
losses = self.onTrainOneIter()
iter_time = time.time() - iter_time
self.last_sample = sample
self.loss_history.append ( [float(loss[1]) for loss in losses] )
@ -527,17 +428,15 @@ class ModelBase(object):
img = (np.concatenate ( [preview_lh, preview], axis=0 ) * 255).astype(np.uint8)
cv2_imwrite (filepath, img )
self.on_success_train_one_iter()
self.iter += 1
return self.iter, iter_time
def pass_one_iter(self):
self.last_sample = self.generate_next_sample()
self.generate_next_samples()
def finalize(self):
nnlib.finalize_all()
nn.tf_close_session()
def is_first_run(self):
return self.iter == 0
@ -554,6 +453,10 @@ class ModelBase(object):
def get_iter(self):
return self.iter
def set_iter(self, iter):
self.iter = iter
self.loss_history = self.loss_history[:iter]
def get_loss_history(self):
return self.loss_history
@ -564,30 +467,48 @@ class ModelBase(object):
return self.generator_list
def get_model_root_path(self):
return self.model_path
return self.saved_models_path
def get_strpath_storage_for_file(self, filename):
if self.device_args['force_gpu_idx'] == -1:
return str( self.model_path / ( self.get_model_name() + '_' + filename) )
else:
return str( self.model_path / ( str(self.device_args['force_gpu_idx']) + '_' + self.get_model_name() + '_' + filename) )
return str( self.saved_models_path / ( self.get_model_name() + '_' + filename) )
def set_vram_batch_requirements (self, d):
#example d = {2:2,3:4,4:8,5:16,6:32,7:32,8:32,9:48}
keys = [x for x in d.keys()]
def get_summary_text(self):
###Generate text summary of model hyperparameters
#Find the longest key name and value string. Used as column widths.
width_name = max([len(k) for k in self.options.keys()] + [17]) + 1 # Single space buffer to left edge. Minimum of 17, the length of the longest static string used "Current iteration"
width_value = max([len(str(x)) for x in self.options.values()] + [len(str(self.get_iter())), len(self.get_model_name())]) + 1 # Single space buffer to right edge
if not self.device_config.cpu_only: #Check length of GPU names
width_value = max([len(device.name)+1 for device in self.device_config.devices] + [width_value])
width_total = width_name + width_value + 2 #Plus 2 for ": "
summary_text = []
summary_text += [f'=={" Model Summary ":=^{width_total}}=='] # Model/status summary
summary_text += [f'=={" "*width_total}==']
summary_text += [f'=={"Model name": >{width_name}}: {self.get_model_name(): <{width_value}}=='] # Name
summary_text += [f'=={" "*width_total}==']
summary_text += [f'=={"Current iteration": >{width_name}}: {str(self.get_iter()): <{width_value}}=='] # Iter
summary_text += [f'=={" "*width_total}==']
summary_text += [f'=={" Model Options ":-^{width_total}}=='] # Model options
summary_text += [f'=={" "*width_total}==']
for key in self.options.keys():
summary_text += [f'=={key: >{width_name}}: {str(self.options[key]): <{width_value}}=='] # self.options key/value pairs
summary_text += [f'=={" "*width_total}==']
summary_text += [f'=={" Running On ":-^{width_total}}=='] # Training hardware info
summary_text += [f'=={" "*width_total}==']
if self.device_config.cpu_only:
if self.batch_size == 0:
self.batch_size = 2
summary_text += [f'=={"Using device": >{width_name}}: {"CPU": <{width_value}}=='] # cpu_only
else:
if self.batch_size == 0:
for x in keys:
if self.device_config.gpu_vram_gb[0] <= x:
self.batch_size = d[x]
break
if self.batch_size == 0:
self.batch_size = d[ keys[-1] ]
for device in self.device_config.devices:
summary_text += [f'=={"Device index": >{width_name}}: {device.index: <{width_value}}=='] # GPU hardware device index
summary_text += [f'=={"Name": >{width_name}}: {device.name: <{width_value}}=='] # GPU name
vram_str = f'{device.total_mem_gb:.2f}GB' # GPU VRAM - Formated as #.## (or ##.##)
summary_text += [f'=={"VRAM": >{width_name}}: {vram_str: <{width_value}}==']
summary_text += [f'=={" "*width_total}==']
summary_text += [f'=={"="*width_total}==']
summary_text = "\n".join (summary_text)
return summary_text
@staticmethod
def get_loss_history_preview(loss_history, iter, w, c):