DFL-2.0 initial branch commit

This commit is contained in:
Colombo 2020-01-21 18:43:39 +04:00
commit 38b85108b3
154 changed files with 5251 additions and 9414 deletions

View file

@ -1,162 +1,179 @@
import colorsys
import inspect
import json
import operator
import os
import pickle
import shutil
import tempfile
import time
from pathlib import Path
import cv2
import numpy as np
import imagelib
from interact import interact as io
from nnlib import nnlib
from core import imagelib
from core.interact import interact as io
from core.leras import nn
from samplelib import SampleGeneratorBase
from utils import Path_utils, std_utils
from utils.cv2_utils import *
from core import pathex
from core.cv2ex import *
'''
You can implement your own model. Check examples.
'''
class ModelBase(object):
def __init__(self, model_path, training_data_src_path=None, training_data_dst_path=None, pretraining_data_path=None, is_training=False, debug = False, no_preview=False, device_args = None,
ask_enable_autobackup=True,
ask_write_preview_history=True,
ask_target_iter=True,
ask_batch_size=True,
ask_random_flip=True, **kwargs):
device_args['force_gpu_idx'] = device_args.get('force_gpu_idx',-1)
device_args['cpu_only'] = True if debug else device_args.get('cpu_only',False)
if device_args['force_gpu_idx'] == -1 and not device_args['cpu_only']:
idxs_names_list = nnlib.device.getValidDevicesIdxsWithNamesList()
if len(idxs_names_list) > 1:
io.log_info ("You have multi GPUs in a system: ")
for idx, name in idxs_names_list:
io.log_info ("[%d] : %s" % (idx, name) )
device_args['force_gpu_idx'] = io.input_int("Which GPU idx to choose? ( skip: best GPU ) : ", -1, [ x[0] for x in idxs_names_list] )
self.device_args = device_args
self.device_config = nnlib.DeviceConfig(allow_growth=True, **self.device_args)
io.log_info ("Loading model...")
self.model_path = model_path
self.model_data_path = Path( self.get_strpath_storage_for_file('data.dat') )
def __init__(self, is_training=False,
saved_models_path=None,
training_data_src_path=None,
training_data_dst_path=None,
pretraining_data_path=None,
pretrained_model_path=None,
no_preview=False,
force_model_name=None,
force_gpu_idxs=None,
cpu_only=False,
debug=False,
**kwargs):
self.is_training = is_training
self.saved_models_path = saved_models_path
self.training_data_src_path = training_data_src_path
self.training_data_dst_path = training_data_dst_path
self.pretraining_data_path = pretraining_data_path
self.debug = debug
self.pretrained_model_path = pretrained_model_path
self.no_preview = no_preview
self.is_training_mode = is_training
self.debug = debug
self.model_class_name = model_class_name = Path(inspect.getmodule(self).__file__).parent.name.rsplit("_", 1)[1]
if force_model_name is not None:
self.model_name = force_model_name
else:
while True:
# gather all model dat files
saved_models_names = []
for filepath in pathex.get_file_paths(saved_models_path):
filepath_name = filepath.name
if filepath_name.endswith(f'{model_class_name}_data.dat'):
saved_models_names += [ (filepath_name.split('_')[0], os.path.getmtime(filepath)) ]
# sort by modified datetime
saved_models_names = sorted(saved_models_names, key=operator.itemgetter(1), reverse=True )
saved_models_names = [ x[0] for x in saved_models_names ]
if len(saved_models_names) != 0:
io.log_info ("Choose one of saved models, or enter a name to create a new model.")
io.log_info ("[r] : rename")
io.log_info ("[d] : delete")
io.log_info ("")
for i, model_name in enumerate(saved_models_names):
s = f"[{i}] : {model_name} "
if i == 0:
s += "- latest"
io.log_info (s)
inp = io.input_str(f"", "0", show_default_value=False )
model_idx = -1
try:
model_idx = np.clip ( int(inp), 0, len(saved_models_names)-1 )
except:
pass
if model_idx == -1:
if len(inp) == 1:
is_rename = inp[0] == 'r'
is_delete = inp[0] == 'd'
if is_rename or is_delete:
if len(saved_models_names) != 0:
if is_rename:
name = io.input_str(f"Enter the name of the model you want to rename")
elif is_delete:
name = io.input_str(f"Enter the name of the model you want to delete")
if name in saved_models_names:
if is_rename:
new_model_name = io.input_str(f"Enter new name of the model")
for filepath in pathex.get_file_paths(saved_models_path):
filepath_name = filepath.name
model_filename, remain_filename = filepath_name.split('_', 1)
if model_filename == name:
if is_rename:
new_filepath = filepath.parent / ( new_model_name + '_' + remain_filename )
filepath.rename (new_filepath)
elif is_delete:
filepath.unlink()
continue
self.model_name = inp
else:
self.model_name = saved_models_names[model_idx]
else:
self.model_name = io.input_str(f"No saved models found. Enter a name of a new model", "noname")
break
self.model_name = self.model_name + '_' + self.model_class_name
self.iter = 0
self.options = {}
self.loss_history = []
self.sample_for_preview = None
self.choosed_gpu_indexes = None
model_data = {}
self.model_data_path = Path( self.get_strpath_storage_for_file('data.dat') )
if self.model_data_path.exists():
io.log_info (f"Loading {self.model_name} model...")
model_data = pickle.loads ( self.model_data_path.read_bytes() )
self.iter = max( model_data.get('iter',0), model_data.get('epoch',0) )
if 'epoch' in self.options:
self.options.pop('epoch')
self.iter = model_data.get('iter',0)
if self.iter != 0:
self.options = model_data['options']
self.loss_history = model_data.get('loss_history', [])
self.sample_for_preview = model_data.get('sample_for_preview', None)
self.choosed_gpu_indexes = model_data.get('choosed_gpu_indexes', None)
ask_override = self.is_training_mode and self.iter != 0 and io.input_in_time ("Press enter in 2 seconds to override model settings.", 5 if io.is_colab() else 2 )
yn_str = {True:'y',False:'n'}
if self.iter == 0:
if self.is_first_run():
io.log_info ("\nModel first run.")
if ask_enable_autobackup and (self.iter == 0 or ask_override):
default_autobackup = False if self.iter == 0 else self.options.get('autobackup',False)
self.options['autobackup'] = io.input_bool("Enable autobackup? (y/n ?:help skip:%s) : " % (yn_str[default_autobackup]) , default_autobackup, help_message="Autobackup model files with preview every hour for last 15 hours. Latest backup located in model/<>_autobackups/01")
else:
self.options['autobackup'] = self.options.get('autobackup', False)
self.device_config = nn.DeviceConfig.GPUIndexes( force_gpu_idxs or nn.ask_choose_device_idxs(suggest_best_multi_gpu=True)) \
if not cpu_only else nn.DeviceConfig.CPU()
if ask_write_preview_history and (self.iter == 0 or ask_override):
default_write_preview_history = False if self.iter == 0 else self.options.get('write_preview_history',False)
self.options['write_preview_history'] = io.input_bool("Write preview history? (y/n ?:help skip:%s) : " % (yn_str[default_write_preview_history]) , default_write_preview_history, help_message="Preview history will be writed to <ModelName>_history folder.")
else:
self.options['write_preview_history'] = self.options.get('write_preview_history', False)
nn.initialize(self.device_config)
if (self.iter == 0 or ask_override) and self.options['write_preview_history'] and io.is_support_windows():
choose_preview_history = io.input_bool("Choose image for the preview history? (y/n skip:%s) : " % (yn_str[False]) , False)
elif (self.iter == 0 or ask_override) and self.options['write_preview_history'] and io.is_colab():
choose_preview_history = io.input_bool("Randomly choose new image for preview history? (y/n ?:help skip:%s) : " % (yn_str[False]), False, help_message="Preview image history will stay stuck with old faces if you reuse the same model on different celebs. Choose no unless you are changing src/dst to a new person")
else:
choose_preview_history = False
####
self.default_options_path = saved_models_path / f'{self.model_class_name}_default_options.dat'
self.default_options = {}
if self.default_options_path.exists():
try:
self.default_options = pickle.loads ( self.default_options_path.read_bytes() )
except:
pass
if ask_target_iter:
if (self.iter == 0 or ask_override):
self.options['target_iter'] = max(0, io.input_int("Target iteration (skip:unlimited/default) : ", 0))
else:
self.options['target_iter'] = max(model_data.get('target_iter',0), self.options.get('target_epoch',0))
if 'target_epoch' in self.options:
self.options.pop('target_epoch')
self.choose_preview_history = False
self.batch_size = self.load_or_def_option('batch_size', 1)
#####
if ask_batch_size and (self.iter == 0 or ask_override):
default_batch_size = 0 if self.iter == 0 else self.options.get('batch_size',0)
self.batch_size = max(0, io.input_int("Batch_size (?:help skip:%d) : " % (default_batch_size), default_batch_size, help_message="Larger batch size is better for NN's generalization, but it can cause Out of Memory error. Tune this value for your videocard manually."))
else:
self.batch_size = self.options.get('batch_size', 0)
if ask_random_flip:
default_random_flip = self.options.get('random_flip', True)
if (self.iter == 0 or ask_override):
self.options['random_flip'] = io.input_bool(f"Flip faces randomly? (y/n ?:help skip:{yn_str[default_random_flip]}) : ", default_random_flip, help_message="Predicted face will look more naturally without this option, but src faceset should cover all face directions as dst faceset.")
else:
self.options['random_flip'] = self.options.get('random_flip', default_random_flip)
self.on_initialize_options()
if self.is_first_run():
# save as default options only for first run model initialize
self.default_options_path.write_bytes( pickle.dumps (self.options) )
self.autobackup = self.options.get('autobackup', False)
if not self.autobackup and 'autobackup' in self.options:
self.options.pop('autobackup')
self.write_preview_history = self.options.get('write_preview_history', False)
if not self.write_preview_history and 'write_preview_history' in self.options:
self.options.pop('write_preview_history')
self.target_iter = self.options.get('target_iter',0)
if self.target_iter == 0 and 'target_iter' in self.options:
self.options.pop('target_iter')
#self.batch_size = self.options.get('batch_size',0)
self.sort_by_yaw = self.options.get('sort_by_yaw',False)
self.random_flip = self.options.get('random_flip',True)
self.onInitializeOptions(self.iter == 0, ask_override)
nnlib.import_all(self.device_config)
self.keras = nnlib.keras
self.K = nnlib.keras.backend
self.onInitialize()
self.on_initialize()
self.options['batch_size'] = self.batch_size
if self.debug or self.batch_size == 0:
self.batch_size = 1
if self.is_training_mode:
if self.device_args['force_gpu_idx'] == -1:
self.preview_history_path = self.model_path / ( '%s_history' % (self.get_model_name()) )
self.autobackups_path = self.model_path / ( '%s_autobackups' % (self.get_model_name()) )
else:
self.preview_history_path = self.model_path / ( '%d_%s_history' % (self.device_args['force_gpu_idx'], self.get_model_name()) )
self.autobackups_path = self.model_path / ( '%d_%s_autobackups' % (self.device_args['force_gpu_idx'], self.get_model_name()) )
if self.is_training:
self.preview_history_path = self.saved_models_path / ( f'{self.get_model_name()}_history' )
self.autobackups_path = self.saved_models_path / ( f'{self.get_model_name()}_autobackups' )
if self.autobackup:
self.autobackup_current_hour = time.localtime().tm_hour
@ -169,7 +186,7 @@ class ModelBase(object):
self.preview_history_path.mkdir(exist_ok=True)
else:
if self.iter == 0:
for filename in Path_utils.get_image_paths(self.preview_history_path):
for filename in pathex.get_image_paths(self.preview_history_path):
Path(filename).unlink()
if self.generator_list is None:
@ -179,15 +196,15 @@ class ModelBase(object):
if not isinstance(generator, SampleGeneratorBase):
raise ValueError('training data generator is not subclass of SampleGeneratorBase')
if self.sample_for_preview is None or choose_preview_history:
if choose_preview_history and io.is_support_windows():
if self.sample_for_preview is None or self.choose_preview_history:
if self.choose_preview_history and io.is_support_windows():
io.log_info ("Choose image for the preview history. [p] - next. [enter] - confirm.")
wnd_name = "[p] - next. [enter] - confirm."
io.named_window(wnd_name)
io.capture_keys(wnd_name)
choosed = False
while not choosed:
self.sample_for_preview = self.generate_next_sample()
self.sample_for_preview = self.generate_next_samples()
preview = self.get_static_preview()
io.show_image( wnd_name, (preview*255).astype(np.uint8) )
@ -207,73 +224,66 @@ class ModelBase(object):
io.destroy_window(wnd_name)
else:
self.sample_for_preview = self.generate_next_sample()
self.sample_for_preview = self.generate_next_samples()
try:
self.get_static_preview()
except:
self.sample_for_preview = self.generate_next_sample()
self.sample_for_preview = self.generate_next_samples()
self.last_sample = self.sample_for_preview
###Generate text summary of model hyperparameters
#Find the longest key name and value string. Used as column widths.
width_name = max([len(k) for k in self.options.keys()] + [17]) + 1 # Single space buffer to left edge. Minimum of 17, the length of the longest static string used "Current iteration"
width_value = max([len(str(x)) for x in self.options.values()] + [len(str(self.iter)), len(self.get_model_name())]) + 1 # Single space buffer to right edge
if not self.device_config.cpu_only: #Check length of GPU names
width_value = max([len(nnlib.device.getDeviceName(idx))+1 for idx in self.device_config.gpu_idxs] + [width_value])
width_total = width_name + width_value + 2 #Plus 2 for ": "
io.log_info( self.get_summary_text() )
model_summary_text = []
model_summary_text += [f'=={" Model Summary ":=^{width_total}}=='] # Model/status summary
model_summary_text += [f'=={" "*width_total}==']
model_summary_text += [f'=={"Model name": >{width_name}}: {self.get_model_name(): <{width_value}}=='] # Name
model_summary_text += [f'=={" "*width_total}==']
model_summary_text += [f'=={"Current iteration": >{width_name}}: {str(self.iter): <{width_value}}=='] # Iter
model_summary_text += [f'=={" "*width_total}==']
def load_or_def_option(self, name, def_value):
options_val = self.options.get(name, None)
if options_val is not None:
return options_val
model_summary_text += [f'=={" Model Options ":-^{width_total}}=='] # Model options
model_summary_text += [f'=={" "*width_total}==']
for key in self.options.keys():
model_summary_text += [f'=={key: >{width_name}}: {str(self.options[key]): <{width_value}}=='] # self.options key/value pairs
model_summary_text += [f'=={" "*width_total}==']
def_opt_val = self.default_options.get(name, None)
if def_opt_val is not None:
return def_opt_val
model_summary_text += [f'=={" Running On ":-^{width_total}}=='] # Training hardware info
model_summary_text += [f'=={" "*width_total}==']
if self.device_config.multi_gpu:
model_summary_text += [f'=={"Using multi_gpu": >{width_name}}: {"True": <{width_value}}=='] # multi_gpu
model_summary_text += [f'=={" "*width_total}==']
if self.device_config.cpu_only:
model_summary_text += [f'=={"Using device": >{width_name}}: {"CPU": <{width_value}}=='] # cpu_only
else:
for idx in self.device_config.gpu_idxs:
model_summary_text += [f'=={"Device index": >{width_name}}: {idx: <{width_value}}=='] # GPU hardware device index
model_summary_text += [f'=={"Name": >{width_name}}: {nnlib.device.getDeviceName(idx): <{width_value}}=='] # GPU name
vram_str = f'{nnlib.device.getDeviceVRAMTotalGb(idx):.2f}GB' # GPU VRAM - Formated as #.## (or ##.##)
model_summary_text += [f'=={"VRAM": >{width_name}}: {vram_str: <{width_value}}==']
model_summary_text += [f'=={" "*width_total}==']
model_summary_text += [f'=={"="*width_total}==']
return def_value
if not self.device_config.cpu_only and self.device_config.gpu_vram_gb[0] <= 2: # Low VRAM warning
model_summary_text += ["/!\\"]
model_summary_text += ["/!\\ WARNING:"]
model_summary_text += ["/!\\ You are using a GPU with 2GB or less VRAM. This may significantly reduce the quality of your result!"]
model_summary_text += ["/!\\ If training does not start, close all programs and try again."]
model_summary_text += ["/!\\ Also you can disable Windows Aero Desktop to increase available VRAM."]
model_summary_text += ["/!\\"]
def ask_override(self):
return self.is_training and self.iter != 0 and io.input_in_time ("Press enter in 2 seconds to override model settings.", 5 if io.is_colab() else 2 )
def ask_enable_autobackup(self):
default_autobackup = self.options['autobackup'] = self.load_or_def_option('autobackup', False)
self.options['autobackup'] = io.input_bool(f"Enable autobackup", default_autobackup, help_message="Autobackup model files with preview every hour for last 15 hours. Latest backup located in model/<>_autobackups/01")
def ask_write_preview_history(self):
default_write_preview_history = self.load_or_def_option('write_preview_history', False)
self.options['write_preview_history'] = io.input_bool(f"Write preview history", default_write_preview_history, help_message="Preview history will be writed to <ModelName>_history folder.")
if self.options['write_preview_history']:
if io.is_support_windows():
self.choose_preview_history = io.input_bool("Choose image for the preview history", False)
elif io.is_colab():
self.choose_preview_history = io.input_bool("Randomly choose new image for preview history", False, help_message="Preview image history will stay stuck with old faces if you reuse the same model on different celebs. Choose no unless you are changing src/dst to a new person")
def ask_target_iter(self):
default_target_iter = self.load_or_def_option('target_iter', 0)
self.options['target_iter'] = max(0, io.input_int("Target iteration", default_target_iter))
def ask_random_flip(self):
default_random_flip = self.load_or_def_option('random_flip', True)
self.options['random_flip'] = io.input_bool("Flip faces randomly", default_random_flip, help_message="Predicted face will look more naturally without this option, but src faceset should cover all face directions as dst faceset.")
def ask_batch_size(self, suggest_batch_size=None):
default_batch_size = self.load_or_def_option('batch_size', suggest_batch_size or self.batch_size)
self.batch_size = max(0, io.input_int("Batch_size", default_batch_size, help_message="Larger batch size is better for NN's generalization, but it can cause Out of Memory error. Tune this value for your videocard manually."))
model_summary_text = "\n".join (model_summary_text)
self.model_summary_text = model_summary_text
io.log_info(model_summary_text)
#overridable
def onInitializeOptions(self, is_first_run, ask_override):
def on_initialize_options(self):
pass
#overridable
def onInitialize(self):
def on_initialize(self):
'''
initialize your keras models
initialize your models
store and retrieve your model options in self.options['']
@ -283,12 +293,12 @@ class ModelBase(object):
#overridable
def onSave(self):
#save your keras models here
#save your models here
pass
#overridable
def onTrainOneIter(self, sample, generator_list):
#train your keras models here
#train your models here
#return array of losses
return ( ('loss_src', 0), ('loss_dst', 0) )
@ -301,42 +311,26 @@ class ModelBase(object):
#overridable if you want model name differs from folder name
def get_model_name(self):
return Path(inspect.getmodule(self).__file__).parent.name.rsplit("_", 1)[1]
return self.model_name
#overridable , return [ [model, filename],... ] list
def get_model_filename_list(self):
return []
#overridable
def get_ConverterConfig(self):
#return predictor_func, predictor_input_shape, ConverterConfig() for the model
def get_MergerConfig(self):
#return predictor_func, predictor_input_shape, MergerConfig() for the model
raise NotImplementedError
def get_pretraining_data_path(self):
return self.pretraining_data_path
def get_target_iter(self):
return self.target_iter
def is_reached_iter_goal(self):
return self.target_iter != 0 and self.iter >= self.target_iter
#multi gpu in keras actually is fake and doesn't work for training https://github.com/keras-team/keras/issues/11976
#def to_multi_gpu_model_if_possible (self, models_list):
# if len(self.device_config.gpu_idxs) > 1:
# #make batch_size to divide on GPU count without remainder
# self.batch_size = int( self.batch_size / len(self.device_config.gpu_idxs) )
# if self.batch_size == 0:
# self.batch_size = 1
# self.batch_size *= len(self.device_config.gpu_idxs)
#
# result = []
# for model in models_list:
# for i in range( len(model.output_names) ):
# model.output_names = 'output_%d' % (i)
# result += [ nnlib.keras.utils.multi_gpu_model( model, self.device_config.gpu_idxs ) ]
#
# return result
# else:
# return models_list
def get_previews(self):
return self.onGetPreview ( self.last_sample )
@ -345,21 +339,23 @@ class ModelBase(object):
def save(self):
summary_path = self.get_strpath_storage_for_file('summary.txt')
Path( summary_path ).write_text(self.model_summary_text)
Path( summary_path ).write_text( self.get_summary_text() )
self.onSave()
model_data = {
'iter': self.iter,
'options': self.options,
'loss_history': self.loss_history,
'sample_for_preview' : self.sample_for_preview
'sample_for_preview' : self.sample_for_preview,
'choosed_gpu_indexes' : self.choosed_gpu_indexes,
}
self.model_data_path.write_bytes( pickle.dumps(model_data) )
bckp_filename_list = [ self.get_strpath_storage_for_file(filename) for _, filename in self.get_model_filename_list() ]
bckp_filename_list += [ str(summary_path), str(self.model_data_path) ]
pathex.write_bytes_safe (self.model_data_path, pickle.dumps(model_data) )
if self.autobackup:
bckp_filename_list = [ self.get_strpath_storage_for_file(filename) for _, filename in self.get_model_filename_list() ]
bckp_filename_list += [ str(summary_path), str(self.model_data_path) ]
current_hour = time.localtime().tm_hour
if self.autobackup_current_hour != current_hour:
self.autobackup_current_hour = current_hour
@ -373,10 +369,10 @@ class ModelBase(object):
if idx_backup_path.exists():
if i == 15:
Path_utils.delete_all_files(idx_backup_path)
pathex.delete_all_files(idx_backup_path)
else:
next_idx_packup_path.mkdir(exist_ok=True)
Path_utils.move_all_files (idx_backup_path, next_idx_packup_path)
pathex.move_all_files (idx_backup_path, next_idx_packup_path)
if i == 1:
idx_backup_path.mkdir(exist_ok=True)
@ -394,97 +390,6 @@ class ModelBase(object):
img = (np.concatenate ( [preview_lh, preview], axis=0 ) * 255).astype(np.uint8)
cv2_imwrite (filepath, img )
def load_weights_safe(self, model_filename_list, optimizer_filename_list=[]):
exec(nnlib.code_import_all, locals(), globals())
loaded = []
not_loaded = []
for mf in model_filename_list:
model, filename = mf
filename = self.get_strpath_storage_for_file(filename)
if Path(filename).exists():
loaded += [ mf ]
if issubclass(model.__class__, keras.optimizers.Optimizer):
opt = model
try:
with open(filename, "rb") as f:
fd = pickle.loads(f.read())
weights = fd.get('weights', None)
if weights is not None:
opt.set_weights(weights)
except Exception as e:
print ("Unable to load ", filename)
else:
model.load_weights(filename)
else:
not_loaded += [ mf ]
return loaded, not_loaded
def save_weights_safe(self, model_filename_list):
exec(nnlib.code_import_all, locals(), globals())
for model, filename in model_filename_list:
filename = self.get_strpath_storage_for_file(filename) + '.tmp'
if issubclass(model.__class__, keras.optimizers.Optimizer):
opt = model
try:
fd = {}
symbolic_weights = getattr(opt, 'weights')
if symbolic_weights:
fd['weights'] = self.K.batch_get_value(symbolic_weights)
with open(filename, 'wb') as f:
f.write( pickle.dumps(fd) )
except Exception as e:
print ("Unable to save ", filename)
else:
model.save_weights( filename)
rename_list = model_filename_list
"""
#unused
, optimizer_filename_list=[]
if len(optimizer_filename_list) != 0:
opt_filename = self.get_strpath_storage_for_file('opt.h5')
try:
d = {}
for opt, filename in optimizer_filename_list:
fd = {}
symbolic_weights = getattr(opt, 'weights')
if symbolic_weights:
fd['weights'] = self.K.batch_get_value(symbolic_weights)
d[filename] = fd
with open(opt_filename+'.tmp', 'wb') as f:
f.write( pickle.dumps(d) )
rename_list += [('', 'opt.h5')]
except Exception as e:
print ("Unable to save ", opt_filename)
"""
for _, filename in rename_list:
filename = self.get_strpath_storage_for_file(filename)
source_filename = Path(filename+'.tmp')
if source_filename.exists():
target_filename = Path(filename)
if target_filename.exists():
target_filename.unlink()
source_filename.rename ( str(target_filename) )
def debug_one_iter(self):
images = []
for generator in self.generator_list:
@ -494,19 +399,15 @@ class ModelBase(object):
return imagelib.equalize_and_stack_square (images)
def generate_next_sample(self):
return [ generator.generate_next() for generator in self.generator_list]
#overridable
def on_success_train_one_iter(self):
pass
def generate_next_samples(self):
self.last_sample = sample = [ generator.generate_next() for generator in self.generator_list]
return sample
def train_one_iter(self):
sample = self.generate_next_sample()
iter_time = time.time()
losses = self.onTrainOneIter(sample, self.generator_list)
losses = self.onTrainOneIter()
iter_time = time.time() - iter_time
self.last_sample = sample
self.loss_history.append ( [float(loss[1]) for loss in losses] )
@ -527,17 +428,15 @@ class ModelBase(object):
img = (np.concatenate ( [preview_lh, preview], axis=0 ) * 255).astype(np.uint8)
cv2_imwrite (filepath, img )
self.on_success_train_one_iter()
self.iter += 1
return self.iter, iter_time
def pass_one_iter(self):
self.last_sample = self.generate_next_sample()
self.generate_next_samples()
def finalize(self):
nnlib.finalize_all()
nn.tf_close_session()
def is_first_run(self):
return self.iter == 0
@ -554,6 +453,10 @@ class ModelBase(object):
def get_iter(self):
return self.iter
def set_iter(self, iter):
self.iter = iter
self.loss_history = self.loss_history[:iter]
def get_loss_history(self):
return self.loss_history
@ -564,30 +467,48 @@ class ModelBase(object):
return self.generator_list
def get_model_root_path(self):
return self.model_path
return self.saved_models_path
def get_strpath_storage_for_file(self, filename):
if self.device_args['force_gpu_idx'] == -1:
return str( self.model_path / ( self.get_model_name() + '_' + filename) )
else:
return str( self.model_path / ( str(self.device_args['force_gpu_idx']) + '_' + self.get_model_name() + '_' + filename) )
return str( self.saved_models_path / ( self.get_model_name() + '_' + filename) )
def set_vram_batch_requirements (self, d):
#example d = {2:2,3:4,4:8,5:16,6:32,7:32,8:32,9:48}
keys = [x for x in d.keys()]
def get_summary_text(self):
###Generate text summary of model hyperparameters
#Find the longest key name and value string. Used as column widths.
width_name = max([len(k) for k in self.options.keys()] + [17]) + 1 # Single space buffer to left edge. Minimum of 17, the length of the longest static string used "Current iteration"
width_value = max([len(str(x)) for x in self.options.values()] + [len(str(self.get_iter())), len(self.get_model_name())]) + 1 # Single space buffer to right edge
if not self.device_config.cpu_only: #Check length of GPU names
width_value = max([len(device.name)+1 for device in self.device_config.devices] + [width_value])
width_total = width_name + width_value + 2 #Plus 2 for ": "
summary_text = []
summary_text += [f'=={" Model Summary ":=^{width_total}}=='] # Model/status summary
summary_text += [f'=={" "*width_total}==']
summary_text += [f'=={"Model name": >{width_name}}: {self.get_model_name(): <{width_value}}=='] # Name
summary_text += [f'=={" "*width_total}==']
summary_text += [f'=={"Current iteration": >{width_name}}: {str(self.get_iter()): <{width_value}}=='] # Iter
summary_text += [f'=={" "*width_total}==']
summary_text += [f'=={" Model Options ":-^{width_total}}=='] # Model options
summary_text += [f'=={" "*width_total}==']
for key in self.options.keys():
summary_text += [f'=={key: >{width_name}}: {str(self.options[key]): <{width_value}}=='] # self.options key/value pairs
summary_text += [f'=={" "*width_total}==']
summary_text += [f'=={" Running On ":-^{width_total}}=='] # Training hardware info
summary_text += [f'=={" "*width_total}==']
if self.device_config.cpu_only:
if self.batch_size == 0:
self.batch_size = 2
summary_text += [f'=={"Using device": >{width_name}}: {"CPU": <{width_value}}=='] # cpu_only
else:
if self.batch_size == 0:
for x in keys:
if self.device_config.gpu_vram_gb[0] <= x:
self.batch_size = d[x]
break
if self.batch_size == 0:
self.batch_size = d[ keys[-1] ]
for device in self.device_config.devices:
summary_text += [f'=={"Device index": >{width_name}}: {device.index: <{width_value}}=='] # GPU hardware device index
summary_text += [f'=={"Name": >{width_name}}: {device.name: <{width_value}}=='] # GPU name
vram_str = f'{device.total_mem_gb:.2f}GB' # GPU VRAM - Formated as #.## (or ##.##)
summary_text += [f'=={"VRAM": >{width_name}}: {vram_str: <{width_value}}==']
summary_text += [f'=={" "*width_total}==']
summary_text += [f'=={"="*width_total}==']
summary_text = "\n".join (summary_text)
return summary_text
@staticmethod
def get_loss_history_preview(loss_history, iter, w, c):

View file

@ -1,490 +0,0 @@
from functools import partial
import cv2
import numpy as np
from facelib import FaceType
from interact import interact as io
from mathlib import get_power_of_two
from models import ModelBase
from nnlib import nnlib
from samplelib import *
from facelib import PoseEstimator
class AVATARModel(ModelBase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs,
ask_random_flip=False)
#override
def onInitializeOptions(self, is_first_run, ask_override):
if is_first_run:
#avatar_type = io.input_int("Avatar type ( 0:source, 1:head, 2:full_face ?:help skip:1) : ", 1, [0,1,2],
# help_message="Training target for the model. Source is direct untouched images. Full_face or head are centered nose unaligned faces.")
#avatar_type = {0:'source',
# 1:'head',
# 2:'full_face'}[avatar_type]
self.options['avatar_type'] = 'head'
else:
self.options['avatar_type'] = self.options.get('avatar_type', 'head')
if is_first_run or ask_override:
def_stage = self.options.get('stage', 1)
self.options['stage'] = io.input_int("Stage (0, 1, 2 ?:help skip:%d) : " % def_stage, def_stage, [0,1,2], help_message="Train first stage, then second. Tune batch size to maximum possible for both stages.")
else:
self.options['stage'] = self.options.get('stage', 1)
#override
def onInitialize(self, batch_size=-1, **in_options):
exec(nnlib.code_import_all, locals(), globals())
self.set_vram_batch_requirements({6:4})
resolution = self.resolution = 224
avatar_type = self.options['avatar_type']
stage = self.stage = self.options['stage']
df_res = self.df_res = 128
df_bgr_shape = (df_res, df_res, 3)
df_mask_shape = (df_res, df_res, 1)
res_bgr_shape = (resolution, resolution, 3)
res_bgr_t_shape = (resolution, resolution, 9)
self.enc = modelify(AVATARModel.EncFlow())( [Input(df_bgr_shape),] )
self.decA64 = modelify(AVATARModel.DecFlow()) ( [ Input(K.int_shape(self.enc.outputs[0])[1:]) ] )
self.decB64 = modelify(AVATARModel.DecFlow()) ( [ Input(K.int_shape(self.enc.outputs[0])[1:]) ] )
self.D = modelify(AVATARModel.Discriminator() ) (Input(df_bgr_shape))
self.C = modelify(AVATARModel.ResNet (9, n_blocks=6, ngf=128, use_dropout=False))( Input(res_bgr_t_shape))
self.CA_conv_weights_list = []
if self.is_first_run():
for model, _ in self.get_model_filename_list():
for layer in model.layers:
if type(layer) == keras.layers.Conv2D:
self.CA_conv_weights_list += [layer.weights[0]] #Conv2D kernel_weights
if not self.is_first_run():
self.load_weights_safe( self.get_model_filename_list() )
def DLoss(labels,logits):
return K.mean(K.binary_crossentropy(labels,logits))
warped_A64 = Input(df_bgr_shape)
real_A64 = Input(df_bgr_shape)
real_A64m = Input(df_mask_shape)
real_B64_t0 = Input(df_bgr_shape)
real_B64_t1 = Input(df_bgr_shape)
real_B64_t2 = Input(df_bgr_shape)
real_A64_t0 = Input(df_bgr_shape)
real_A64m_t0 = Input(df_mask_shape)
real_A_t0 = Input(res_bgr_shape)
real_A64_t1 = Input(df_bgr_shape)
real_A64m_t1 = Input(df_mask_shape)
real_A_t1 = Input(res_bgr_shape)
real_A64_t2 = Input(df_bgr_shape)
real_A64m_t2 = Input(df_mask_shape)
real_A_t2 = Input(res_bgr_shape)
warped_B64 = Input(df_bgr_shape)
real_B64 = Input(df_bgr_shape)
real_B64m = Input(df_mask_shape)
warped_A_code = self.enc (warped_A64)
warped_B_code = self.enc (warped_B64)
rec_A64 = self.decA64(warped_A_code)
rec_B64 = self.decB64(warped_B_code)
rec_AB64 = self.decA64(warped_B_code)
def Lambda_grey_mask (x,m):
return Lambda (lambda x: x[0]*m+(1-m)*0.5, output_shape= K.int_shape(x)[1:3] + (3,)) ([x, m])
def Lambda_gray_pad(x):
a = np.ones((resolution,resolution,3))*0.5
pad = ( resolution - df_res ) // 2
a[pad:-pad:,pad:-pad:,:] = 0
return Lambda ( lambda x: K.spatial_2d_padding(x, padding=((pad, pad), (pad, pad)) ) + K.constant(a, dtype=K.floatx() ),
output_shape=(resolution,resolution,3) ) (x)
def Lambda_concat ( x ):
c = sum ( [ K.int_shape(l)[-1] for l in x ] )
return Lambda ( lambda x: K.concatenate (x, axis=-1), output_shape=K.int_shape(x[0])[1:3] + (c,) ) (x)
def Lambda_Cto3t(x):
return Lambda ( lambda x: x[...,0:3], output_shape= K.int_shape(x)[1:3] + (3,) ) (x), \
Lambda ( lambda x: x[...,3:6], output_shape= K.int_shape(x)[1:3] + (3,) ) (x), \
Lambda ( lambda x: x[...,6:9], output_shape= K.int_shape(x)[1:3] + (3,) ) (x)
real_A64_d = self.D( Lambda_grey_mask(real_A64, real_A64m) )
real_A64_d_ones = K.ones_like(real_A64_d)
fake_A64_d = self.D(rec_AB64)
fake_A64_d_ones = K.ones_like(fake_A64_d)
fake_A64_d_zeros = K.zeros_like(fake_A64_d)
rec_AB_t0 = Lambda_gray_pad( self.decA64 (self.enc (real_B64_t0)) )
rec_AB_t1 = Lambda_gray_pad( self.decA64 (self.enc (real_B64_t1)) )
rec_AB_t2 = Lambda_gray_pad( self.decA64 (self.enc (real_B64_t2)) )
C_in_A_t0 = Lambda_gray_pad( Lambda_grey_mask (real_A64_t0, real_A64m_t0) )
C_in_A_t1 = Lambda_gray_pad( Lambda_grey_mask (real_A64_t1, real_A64m_t1) )
C_in_A_t2 = Lambda_gray_pad( Lambda_grey_mask (real_A64_t2, real_A64m_t2) )
rec_C_A_t0, rec_C_A_t1, rec_C_A_t2 = Lambda_Cto3t ( self.C ( Lambda_concat ( [C_in_A_t0, C_in_A_t1, C_in_A_t2]) ) )
rec_C_AB_t0, rec_C_AB_t1, rec_C_AB_t2 = Lambda_Cto3t( self.C ( Lambda_concat ( [rec_AB_t0, rec_AB_t1, rec_AB_t2]) ) )
#real_A_t012_d = self.CD ( K.concatenate ( [real_A_t0, real_A_t1,real_A_t2], axis=-1) )
#real_A_t012_d_ones = K.ones_like(real_A_t012_d)
#rec_C_AB_t012_d = self.CD ( K.concatenate ( [rec_C_AB_t0,rec_C_AB_t1, rec_C_AB_t2], axis=-1) )
#rec_C_AB_t012_d_ones = K.ones_like(rec_C_AB_t012_d)
#rec_C_AB_t012_d_zeros = K.zeros_like(rec_C_AB_t012_d)
self.G64_view = K.function([warped_A64, warped_B64],[rec_A64, rec_B64, rec_AB64])
self.G_view = K.function([real_A64_t0, real_A64m_t0, real_A64_t1, real_A64m_t1, real_A64_t2, real_A64m_t2, real_B64_t0, real_B64_t1, real_B64_t2], [rec_C_A_t0, rec_C_A_t1, rec_C_A_t2, rec_C_AB_t0, rec_C_AB_t1, rec_C_AB_t2])
if self.is_training_mode:
loss_AB64 = K.mean(10 * dssim(kernel_size=int(df_res/11.6),max_value=1.0) ( rec_A64, real_A64*real_A64m + (1-real_A64m)*0.5) ) + \
K.mean(10 * dssim(kernel_size=int(df_res/11.6),max_value=1.0) ( rec_B64, real_B64*real_B64m + (1-real_B64m)*0.5) ) + 0.1*DLoss(fake_A64_d_ones, fake_A64_d )
weights_AB64 = self.enc.trainable_weights + self.decA64.trainable_weights + self.decB64.trainable_weights
loss_C = K.mean( 10 * dssim(kernel_size=int(resolution/11.6),max_value=1.0) ( real_A_t0, rec_C_A_t0 ) ) + \
K.mean( 10 * dssim(kernel_size=int(resolution/11.6),max_value=1.0) ( real_A_t1, rec_C_A_t1 ) ) + \
K.mean( 10 * dssim(kernel_size=int(resolution/11.6),max_value=1.0) ( real_A_t2, rec_C_A_t2 ) )
#0.1*DLoss(rec_C_AB_t012_d_ones, rec_C_AB_t012_d )
weights_C = self.C.trainable_weights
loss_D = (DLoss(real_A64_d_ones, real_A64_d ) + \
DLoss(fake_A64_d_zeros, fake_A64_d ) ) * 0.5
#loss_CD = ( DLoss(real_A_t012_d_ones, real_A_t012_d) + \
# DLoss(rec_C_AB_t012_d_zeros, rec_C_AB_t012_d) ) * 0.5
#
#weights_CD = self.CD.trainable_weights
def opt(lr=5e-5):
return Adam(lr=lr, beta_1=0.5, beta_2=0.999, tf_cpu_mode=2 if 'tensorflow' in self.device_config.backend else 0 )
self.AB64_train = K.function ([warped_A64, real_A64, real_A64m, warped_B64, real_B64, real_B64m], [loss_AB64], opt().get_updates(loss_AB64, weights_AB64) )
self.C_train = K.function ([real_A64_t0, real_A64m_t0, real_A_t0,
real_A64_t1, real_A64m_t1, real_A_t1,
real_A64_t2, real_A64m_t2, real_A_t2,
real_B64_t0, real_B64_t1, real_B64_t2],[ loss_C ], opt().get_updates(loss_C, weights_C) )
self.D_train = K.function ([warped_A64, real_A64, real_A64m, warped_B64, real_B64, real_B64m],[loss_D], opt().get_updates(loss_D, self.D.trainable_weights) )
#self.CD_train = K.function ([real_A64_t0, real_A64m_t0, real_A_t0,
# real_A64_t1, real_A64m_t1, real_A_t1,
# real_A64_t2, real_A64m_t2, real_A_t2,
# real_B64_t0, real_B64_t1, real_B64_t2 ],[ loss_CD ], opt().get_updates(loss_CD, weights_CD) )
###########
t = SampleProcessor.Types
training_target = {'source' : t.NONE,
'full_face' : t.FACE_TYPE_FULL_NO_ALIGN,
'head' : t.FACE_TYPE_HEAD_NO_ALIGN}[avatar_type]
generators = [
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=False),
output_sample_types=[ {'types': (t.IMG_WARPED_TRANSFORMED, t.FACE_TYPE_FULL_NO_ALIGN, t.MODE_BGR), 'resolution':df_res},
{'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL_NO_ALIGN, t.MODE_BGR), 'resolution':df_res},
{'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL_NO_ALIGN, t.MODE_M), 'resolution':df_res}
] ),
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=False),
output_sample_types=[ {'types': (t.IMG_WARPED_TRANSFORMED, t.FACE_TYPE_FULL_NO_ALIGN, t.MODE_BGR), 'resolution':df_res},
{'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL_NO_ALIGN, t.MODE_BGR), 'resolution':df_res},
{'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL_NO_ALIGN, t.MODE_M), 'resolution':df_res}
] ),
SampleGeneratorFaceTemporal(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
temporal_image_count=3,
sample_process_options=SampleProcessor.Options(random_flip=False),
output_sample_types=[{'types': (t.IMG_WARPED_TRANSFORMED, t.FACE_TYPE_FULL_NO_ALIGN, t.MODE_BGR), 'resolution':df_res},#IMG_WARPED_TRANSFORMED
{'types': (t.IMG_WARPED_TRANSFORMED, t.FACE_TYPE_FULL_NO_ALIGN, t.MODE_M), 'resolution':df_res},
{'types': (t.IMG_SOURCE, training_target, t.MODE_BGR), 'resolution':resolution},
] ),
SampleGeneratorFaceTemporal(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
temporal_image_count=3,
sample_process_options=SampleProcessor.Options(random_flip=False),
output_sample_types=[{'types': (t.IMG_SOURCE, t.FACE_TYPE_FULL_NO_ALIGN, t.MODE_BGR), 'resolution':df_res},
{'types': (t.IMG_SOURCE, t.NONE, t.MODE_BGR), 'resolution':resolution},
] ),
]
if self.stage == 1:
generators[2].set_active(False)
generators[3].set_active(False)
elif self.stage == 2:
generators[0].set_active(False)
generators[1].set_active(False)
self.set_training_data_generators (generators)
else:
self.G_convert = K.function([real_B64_t0, real_B64_t1, real_B64_t2],[rec_C_AB_t1])
#override , return [ [model, filename],... ] list
def get_model_filename_list(self):
return [ [self.enc, 'enc.h5'],
[self.decA64, 'decA64.h5'],
[self.decB64, 'decB64.h5'],
[self.C, 'C.h5'],
[self.D, 'D.h5'],
#[self.CD, 'CD.h5'],
]
#override
def onSave(self):
self.save_weights_safe( self.get_model_filename_list() )
#override
def on_success_train_one_iter(self):
if len(self.CA_conv_weights_list) != 0:
exec(nnlib.import_all(), locals(), globals())
CAInitializerMP ( self.CA_conv_weights_list )
self.CA_conv_weights_list = []
#override
def onTrainOneIter(self, generators_samples, generators_list):
warped_src64, src64, src64m = generators_samples[0]
warped_dst64, dst64, dst64m = generators_samples[1]
real_A64_t0, real_A64m_t0, real_A_t0, real_A64_t1, real_A64m_t1, real_A_t1, real_A64_t2, real_A64m_t2, real_A_t2 = generators_samples[2]
real_B64_t0, _, real_B64_t1, _, real_B64_t2, _ = generators_samples[3]
if self.stage == 0 or self.stage == 1:
loss, = self.AB64_train ( [warped_src64, src64, src64m, warped_dst64, dst64, dst64m] )
loss_D, = self.D_train ( [warped_src64, src64, src64m, warped_dst64, dst64, dst64m] )
if self.stage != 0:
loss_C = loss_CD = 0
if self.stage == 0 or self.stage == 2:
loss_C1, = self.C_train ( [real_A64_t0, real_A64m_t0, real_A_t0,
real_A64_t1, real_A64m_t1, real_A_t1,
real_A64_t2, real_A64m_t2, real_A_t2,
real_B64_t0, real_B64_t1, real_B64_t2] )
loss_C2, = self.C_train ( [real_A64_t2, real_A64m_t2, real_A_t2,
real_A64_t1, real_A64m_t1, real_A_t1,
real_A64_t0, real_A64m_t0, real_A_t0,
real_B64_t0, real_B64_t1, real_B64_t2] )
#loss_CD1, = self.CD_train ( [real_A64_t0, real_A64m_t0, real_A_t0,
# real_A64_t1, real_A64m_t1, real_A_t1,
# real_A64_t2, real_A64m_t2, real_A_t2,
# real_B64_t0, real_B64_t1, real_B64_t2] )
#
#loss_CD2, = self.CD_train ( [real_A64_t2, real_A64m_t2, real_A_t2,
# real_A64_t1, real_A64m_t1, real_A_t1,
# real_A64_t0, real_A64m_t0, real_A_t0,
# real_B64_t0, real_B64_t1, real_B64_t2] )
loss_C = (loss_C1 + loss_C2) / 2
#loss_CD = (loss_CD1 + loss_CD2) / 2
if self.stage != 0:
loss = loss_D = 0
return ( ('loss', loss), ('D', loss_D), ('C', loss_C), ) #('CD', loss_CD) )
#override
def onGetPreview(self, sample):
test_A064w = sample[0][0][0:4]
test_A064r = sample[0][1][0:4]
test_A064m = sample[0][2][0:4]
test_B064w = sample[1][0][0:4]
test_B064r = sample[1][1][0:4]
test_B064m = sample[1][2][0:4]
t_src64_0 = sample[2][0][0:4]
t_src64m_0 = sample[2][1][0:4]
t_src_0 = sample[2][2][0:4]
t_src64_1 = sample[2][3][0:4]
t_src64m_1 = sample[2][4][0:4]
t_src_1 = sample[2][5][0:4]
t_src64_2 = sample[2][6][0:4]
t_src64m_2 = sample[2][7][0:4]
t_src_2 = sample[2][8][0:4]
t_dst64_0 = sample[3][0][0:4]
t_dst_0 = sample[3][1][0:4]
t_dst64_1 = sample[3][2][0:4]
t_dst_1 = sample[3][3][0:4]
t_dst64_2 = sample[3][4][0:4]
t_dst_2 = sample[3][5][0:4]
G64_view_result = self.G64_view ([test_A064r, test_B064r])
test_A064r, test_B064r, rec_A64, rec_B64, rec_AB64 = [ x[0] for x in ([test_A064r, test_B064r] + G64_view_result) ]
sample64x4 = np.concatenate ([ np.concatenate ( [rec_B64, rec_A64], axis=1 ),
np.concatenate ( [test_B064r, rec_AB64], axis=1) ], axis=0 )
sample64x4 = cv2.resize (sample64x4, (self.resolution, self.resolution) )
G_view_result = self.G_view([t_src64_0, t_src64m_0, t_src64_1, t_src64m_1, t_src64_2, t_src64m_2, t_dst64_0, t_dst64_1, t_dst64_2 ])
t_dst_0, t_dst_1, t_dst_2, rec_C_A_t0, rec_C_A_t1, rec_C_A_t2, rec_C_AB_t0, rec_C_AB_t1, rec_C_AB_t2 = [ x[0] for x in ([t_dst_0, t_dst_1, t_dst_2, ] + G_view_result) ]
c1 = np.concatenate ( (sample64x4, rec_C_A_t0, t_dst_0, rec_C_AB_t0 ), axis=1 )
c2 = np.concatenate ( (sample64x4, rec_C_A_t1, t_dst_1, rec_C_AB_t1 ), axis=1 )
c3 = np.concatenate ( (sample64x4, rec_C_A_t2, t_dst_2, rec_C_AB_t2 ), axis=1 )
r = np.concatenate ( [c1,c2,c3], axis=0 )
return [ ('AVATAR', r ) ]
def predictor_func (self, prev_imgs=None, img=None, next_imgs=None, dummy_predict=False):
if dummy_predict:
z = np.zeros ( (1, self.df_res, self.df_res, 3), dtype=np.float32 )
self.G_convert ([z,z,z])
else:
feed = [ prev_imgs[-1][np.newaxis,...], img[np.newaxis,...], next_imgs[0][np.newaxis,...] ]
x = self.G_convert (feed)[0]
return np.clip ( x[0], 0, 1)
#override
def get_ConverterConfig(self):
import converters
return self.predictor_func, (self.df_res, self.df_res, 3), converters.ConverterConfigFaceAvatar(temporal_face_count=1)
@staticmethod
def Discriminator(ndf=128):
exec (nnlib.import_all(), locals(), globals())
def func(input):
b,h,w,c = K.int_shape(input)
x = input
x = Conv2D( ndf, 4, strides=2, padding='valid')( ZeroPadding2D(1)(x) )
x = LeakyReLU(0.2)(x)
x = Conv2D( ndf*2, 4, strides=2, padding='valid')( ZeroPadding2D(1)(x) )
x = InstanceNormalization (axis=-1)(x)
x = LeakyReLU(0.2)(x)
x = Conv2D( ndf*4, 4, strides=2, padding='valid')( ZeroPadding2D(1)(x) )
x = InstanceNormalization (axis=-1)(x)
x = LeakyReLU(0.2)(x)
x = Conv2D( ndf*8, 4, strides=2, padding='valid')( ZeroPadding2D(1)(x) )
x = InstanceNormalization (axis=-1)(x)
x = LeakyReLU(0.2)(x)
return Conv2D( 1, 4, strides=1, padding='valid', activation='sigmoid')( ZeroPadding2D(3)(x) )
return func
@staticmethod
def EncFlow():
exec (nnlib.import_all(), locals(), globals())
def downscale (dim):
def func(x):
return LeakyReLU(0.1)( Conv2D(dim, 5, strides=2, padding='same')(x))
return func
def upscale (dim):
def func(x):
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, 3, strides=1, padding='same')(x)))
return func
def func(input):
x, = input
b,h,w,c = K.int_shape(x)
dim_res = w // 16
x = downscale(64)(x)
x = downscale(128)(x)
x = downscale(256)(x)
x = downscale(512)(x)
x = Dense(512)(Flatten()(x))
x = Dense(dim_res * dim_res * 512)(x)
x = Reshape((dim_res, dim_res, 512))(x)
x = upscale(512)(x)
return x
return func
@staticmethod
def DecFlow(output_nc=3, **kwargs):
exec (nnlib.import_all(), locals(), globals())
def upscale (dim):
def func(x):
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, 3, strides=1, padding='same')(x)))
return func
def to_bgr (output_nc, **kwargs):
def func(x):
return Conv2D(output_nc, kernel_size=5, strides=1, padding='same', activation='sigmoid')(x)
return func
def func(input):
x = input[0]
x = upscale(512)(x)
x = upscale(256)(x)
x = upscale(128)(x)
return to_bgr(output_nc) (x)
return func
@staticmethod
def ResNet(output_nc, ngf=64, n_blocks=6, use_dropout=False):
exec (nnlib.import_all(), locals(), globals())
def func(input):
def ResnetBlock(dim, use_dropout=False):
def func(input):
x = input
x = Conv2D(dim, 3, strides=1, padding='same')(x)
x = InstanceNormalization (axis=-1)(x)
x = ReLU()(x)
if use_dropout:
x = Dropout(0.5)(x)
x = Conv2D(dim, 3, strides=1, padding='same')(x)
x = InstanceNormalization (axis=-1)(x)
x = ReLU()(x)
return Add()([x,input])
return func
x = input
x = ReLU()(InstanceNormalization (axis=-1)(Conv2D(ngf, 7, strides=1, padding='same')(x)))
x = ReLU()(InstanceNormalization (axis=-1)(Conv2D(ngf*2, 3, strides=2, padding='same')(x)))
x = ReLU()(InstanceNormalization (axis=-1)(Conv2D(ngf*4, 3, strides=2, padding='same')(x)))
x = ReLU()(InstanceNormalization (axis=-1)(Conv2D(ngf*4, 3, strides=2, padding='same')(x)))
for i in range(n_blocks):
x = ResnetBlock(ngf*4, use_dropout=use_dropout)(x)
x = ReLU()(InstanceNormalization (axis=-1)(Conv2DTranspose(ngf*4, 3, strides=2, padding='same')(x)))
x = ReLU()(InstanceNormalization (axis=-1)(Conv2DTranspose(ngf*2, 3, strides=2, padding='same')(x)))
x = ReLU()(InstanceNormalization (axis=-1)(Conv2DTranspose(ngf , 3, strides=2, padding='same')(x)))
x = Conv2D(output_nc, 7, strides=1, activation='sigmoid', padding='same')(x)
return x
return func
Model = AVATARModel

View file

@ -1 +0,0 @@
from .Model import Model

View file

@ -1,103 +0,0 @@
import numpy as np
from nnlib import nnlib, TernausNet
from models import ModelBase
from facelib import FaceType
from samplelib import *
from interact import interact as io
class Model(ModelBase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs,
ask_enable_autobackup=False,
ask_write_preview_history=False,
ask_target_iter=False,
ask_random_flip=False)
#override
def onInitializeOptions(self, is_first_run, ask_override):
default_face_type = 'f'
if is_first_run:
self.options['face_type'] = io.input_str ("Half or Full face? (h/f, ?:help skip:f) : ", default_face_type, ['h','f'], help_message="").lower()
else:
self.options['face_type'] = self.options.get('face_type', default_face_type)
#override
def onInitialize(self):
exec(nnlib.import_all(), locals(), globals())
self.set_vram_batch_requirements( {1.5:4, 11:48} )
self.resolution = 256
self.face_type = FaceType.FULL if self.options['face_type'] == 'f' else FaceType.HALF
model_name = 'FANSeg'
self.fan_seg = TernausNet(model_name, self.resolution,
FaceType.toString(self.face_type),
load_weights=not self.is_first_run(),
weights_file_root=self.get_model_root_path(),
training=True)
if self.is_training_mode:
t = SampleProcessor.Types
face_type = t.FACE_TYPE_FULL if self.options['face_type'] == 'f' else t.FACE_TYPE_HALF
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=True),
output_sample_types=[ { 'types': (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_BGR_RANDOM_HSV_SHIFT), 'resolution' : self.resolution, 'motion_blur':(25, 5), 'gaussian_blur':(25,5), 'border_replicate':False},
{ 'types': (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_M), 'resolution': self.resolution },
]),
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=True ),
output_sample_types=[ { 'types': (t.IMG_TRANSFORMED , face_type, t.MODE_BGR_RANDOM_HSV_SHIFT), 'resolution' : self.resolution},
])
])
#override
def onSave(self):
self.fan_seg.save_weights()
#override
def onTrainOneIter(self, generators_samples, generators_list):
target_src, target_src_mask = generators_samples[0]
loss = self.fan_seg.train( target_src, target_src_mask )
return ( ('loss', loss), )
#override
def onGetPreview(self, sample):
test_A = sample[0][0][0:4] #first 4 samples
test_Am = sample[0][1][0:4] #first 4 samples
test_B = sample[1][0][0:4] #first 4 samples
mAA = self.fan_seg.extract(test_A)
mBB = self.fan_seg.extract(test_B)
test_Am = np.repeat ( test_Am, (3,), -1)
mAA = np.repeat ( mAA, (3,), -1)
mBB = np.repeat ( mBB, (3,), -1)
st = []
for i in range(0, len(test_A)):
st.append ( np.concatenate ( (
test_A[i,:,:,0:3],
test_Am[i],
mAA[i],
test_A[i,:,:,0:3]*mAA[i],
), axis=1) )
st2 = []
for i in range(0, len(test_B)):
st2.append ( np.concatenate ( (
test_B[i,:,:,0:3],
mBB[i],
test_B[i,:,:,0:3]*mBB[i],
), axis=1) )
return [ ('training data', np.concatenate ( st, axis=0 ) ),
('evaluating data', np.concatenate ( st2, axis=0 ) ),
]

View file

@ -1 +0,0 @@
from .Model import Model

View file

@ -1,178 +0,0 @@
from functools import partial
import cv2
import numpy as np
from facelib import FaceType
from interact import interact as io
from mathlib import get_power_of_two
from models import ModelBase
from nnlib import nnlib, FUNIT
from samplelib import *
class FUNITModel(ModelBase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs,
ask_random_flip=False)
#override
def onInitializeOptions(self, is_first_run, ask_override):
default_resolution = 64
if is_first_run:
self.options['resolution'] = io.input_int(f"Resolution ( 64,96,128,224 ?:help skip:{default_resolution}) : ", default_resolution, [64,96,128,224])
else:
self.options['resolution'] = self.options.get('resolution', default_resolution)
default_face_type = 'mf'
if is_first_run:
self.options['face_type'] = io.input_str (f"Half or Full face? (h/mf/f, ?:help skip:{default_face_type}) : ", default_face_type, ['h','mf','f'], help_message="").lower()
else:
self.options['face_type'] = self.options.get('face_type', default_face_type)
if (is_first_run or ask_override) and 'tensorflow' in self.device_config.backend:
def_optimizer_mode = self.options.get('optimizer_mode', 1)
self.options['optimizer_mode'] = io.input_int ("Optimizer mode? ( 1,2,3 ?:help skip:%d) : " % (def_optimizer_mode), def_optimizer_mode, help_message="1 - no changes. 2 - allows you to train x2 bigger network consuming RAM. 3 - allows you to train x3 bigger network consuming huge amount of RAM and slower, depends on CPU power.")
else:
self.options['optimizer_mode'] = self.options.get('optimizer_mode', 1)
#override
def onInitialize(self, batch_size=-1, **in_options):
exec(nnlib.code_import_all, locals(), globals())
self.set_vram_batch_requirements({4:16,11:24})
resolution = self.options['resolution']
face_type = FaceType.FULL if self.options['face_type'] == 'f' else FaceType.HALF
person_id_max_count = SampleGeneratorFacePerson.get_person_id_max_count(self.training_data_src_path)
self.model = FUNIT( face_type_str=FaceType.toString(face_type),
batch_size=self.batch_size,
encoder_nf=64,
encoder_downs=2,
encoder_res_blk=2,
class_downs=4,
class_nf=64,
class_latent=64,
mlp_blks=2,
dis_nf=64,
dis_res_blks=8,#10
num_classes=person_id_max_count,
subpixel_decoder=True,
initialize_weights=self.is_first_run(),
is_training=self.is_training_mode,
tf_cpu_mode=self.options['optimizer_mode']-1
)
if not self.is_first_run():
self.load_weights_safe(self.model.get_model_filename_list())
if self.is_training_mode:
t = SampleProcessor.Types
if self.options['face_type'] == 'h':
face_type = t.FACE_TYPE_HALF
elif self.options['face_type'] == 'mf':
face_type = t.FACE_TYPE_MID_FULL
elif self.options['face_type'] == 'f':
face_type = t.FACE_TYPE_FULL
output_sample_types=[ {'types': (t.IMG_TRANSFORMED, face_type, t.MODE_BGR), 'resolution':resolution, 'normalize_tanh':True} ]
output_sample_types1=[ {'types': (t.IMG_SOURCE, face_type, t.MODE_BGR), 'resolution':resolution, 'normalize_tanh':True} ]
self.set_training_data_generators ([
SampleGeneratorFacePerson(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=True, rotation_range=[0,0] ),
output_sample_types=output_sample_types, person_id_mode=1, ),
SampleGeneratorFacePerson(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=True, rotation_range=[0,0] ),
output_sample_types=output_sample_types, person_id_mode=1, ),
SampleGeneratorFacePerson(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=True, rotation_range=[0,0]),
output_sample_types=output_sample_types1, person_id_mode=1, ),
SampleGeneratorFacePerson(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=True, rotation_range=[0,0]),
output_sample_types=output_sample_types1, person_id_mode=1, ),
])
#override
def get_model_filename_list(self):
return self.model.get_model_filename_list()
#override
def onSave(self):
self.save_weights_safe(self.model.get_model_filename_list())
#override
def onTrainOneIter(self, generators_samples, generators_list):
xa,la = generators_samples[0]
xb,lb = generators_samples[1]
G_loss, D_loss = self.model.train(xa,la,xb,lb)
return ( ('G_loss', G_loss), ('D_loss', D_loss), )
#override
def onGetPreview(self, generators_samples):
xa = generators_samples[0][0]
xb = generators_samples[1][0]
ta = generators_samples[2][0]
tb = generators_samples[3][0]
view_samples = min(4, xa.shape[0])
lines_train = []
lines_test = []
for i in range(view_samples):
s_xa = self.model.get_average_class_code([ xa[i:i+1] ])[0][None,...]
s_xb = self.model.get_average_class_code([ xb[i:i+1] ])[0][None,...]
s_ta = self.model.get_average_class_code([ ta[i:i+1] ])[0][None,...]
s_tb = self.model.get_average_class_code([ tb[i:i+1] ])[0][None,...]
xaxa = self.model.convert ([ xa[i:i+1], s_xa ] )[0][0]
xbxb = self.model.convert ([ xb[i:i+1], s_xb ] )[0][0]
xaxb = self.model.convert ([ xa[i:i+1], s_xb ] )[0][0]
xbxa = self.model.convert ([ xb[i:i+1], s_xa ] )[0][0]
tata = self.model.convert ([ ta[i:i+1], s_ta ] )[0][0]
tbtb = self.model.convert ([ tb[i:i+1], s_tb ] )[0][0]
tatb = self.model.convert ([ ta[i:i+1], s_tb ] )[0][0]
tbta = self.model.convert ([ tb[i:i+1], s_ta ] )[0][0]
line_train = [ xa[i], xaxa, xb[i], xbxb, xaxb, xbxa ]
line_test = [ ta[i], tata, tb[i], tbtb, tatb, tbta ]
lines_train += [ np.concatenate([ np.clip(x/2+0.5,0,1) for x in line_train], axis=1) ]
lines_test += [ np.concatenate([ np.clip(x/2+0.5,0,1) for x in line_test ], axis=1) ]
lines_train = np.concatenate ( lines_train, axis=0 )
lines_test = np.concatenate ( lines_test, axis=0 )
return [ ('TRAIN', lines_train ), ('TEST', lines_test) ]
def predictor_func (self, face=None, dummy_predict=False):
if dummy_predict:
self.model.convert ([ np.zeros ( (1, self.options['resolution'], self.options['resolution'], 3), dtype=np.float32 ), self.average_class_code ])
else:
bgr, = self.model.convert ([ face[np.newaxis,...]*2-1, self.average_class_code ])
return bgr[0] / 2 + 0.5
#override
def get_ConverterConfig(self):
face_type = FaceType.FULL
import converters
return self.predictor_func, (self.options['resolution'], self.options['resolution'], 3), converters.ConverterConfigMasked(face_type=face_type,
default_mode = 1,
clip_hborder_mask_per=0.0625 if (face_type == FaceType.FULL) else 0,
)
Model = FUNITModel

View file

@ -1 +0,0 @@
from .Model import Model

View file

@ -1,120 +0,0 @@
import numpy as np
from nnlib import nnlib
from models import ModelBase
from facelib import FaceType
from facelib import PoseEstimator
from samplelib import *
from interact import interact as io
import imagelib
class Model(ModelBase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs,
ask_enable_autobackup=False,
ask_write_preview_history=False,
ask_target_iter=False,
ask_random_flip=False)
#override
def onInitializeOptions(self, is_first_run, ask_override):
yn_str = {True:'y',False:'n'}
default_face_type = 'f'
if is_first_run:
self.options['face_type'] = io.input_str ("Half or Full face? (h/f, ?:help skip:f) : ", default_face_type, ['h','f'], help_message="Half face has better resolution, but covers less area of cheeks.").lower()
else:
self.options['face_type'] = self.options.get('face_type', default_face_type)
def_train_bgr = self.options.get('train_bgr', True)
if is_first_run or ask_override:
self.options['train_bgr'] = io.input_bool ("Train bgr? (y/n, ?:help skip: %s) : " % (yn_str[def_train_bgr]), def_train_bgr)
else:
self.options['train_bgr'] = self.options.get('train_bgr', def_train_bgr)
#override
def onInitialize(self):
exec(nnlib.import_all(), locals(), globals())
self.set_vram_batch_requirements( {4:64} )
self.resolution = 128
self.face_type = FaceType.FULL if self.options['face_type'] == 'f' else FaceType.HALF
self.pose_est = PoseEstimator(self.resolution,
FaceType.toString(self.face_type),
load_weights=not self.is_first_run(),
weights_file_root=self.get_model_root_path(),
training=True)
if self.is_training_mode:
t = SampleProcessor.Types
face_type = t.FACE_TYPE_FULL if self.options['face_type'] == 'f' else t.FACE_TYPE_HALF
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size, generators_count=4,
sample_process_options=SampleProcessor.Options( rotation_range=[0,0] ), #random_flip=True,
output_sample_types=[ {'types': (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_BGR_SHUFFLE), 'resolution':self.resolution, 'motion_blur':(25, 1) },
{'types': (t.IMG_TRANSFORMED, face_type, t.MODE_BGR_SHUFFLE), 'resolution':self.resolution },
{'types': (t.IMG_PITCH_YAW_ROLL,)}
]),
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size, generators_count=4,
sample_process_options=SampleProcessor.Options( rotation_range=[0,0] ), #random_flip=True,
output_sample_types=[ {'types': (t.IMG_TRANSFORMED, face_type, t.MODE_BGR), 'resolution':self.resolution },
{'types': (t.IMG_PITCH_YAW_ROLL,)}
])
])
#override
def onSave(self):
self.pose_est.save_weights()
#override
def onTrainOneIter(self, generators_samples, generators_list):
target_srcw, target_src, pitch_yaw_roll = generators_samples[0]
bgr_loss, pyr_loss = self.pose_est.train_on_batch( target_srcw, target_src, pitch_yaw_roll, skip_bgr_train=not self.options['train_bgr'] )
return ( ('bgr_loss', bgr_loss), ('pyr_loss', pyr_loss), )
#override
def onGetPreview(self, generators_samples):
test_src = generators_samples[0][1][0:4] #first 4 samples
test_pyr_src = generators_samples[0][2][0:4]
test_dst = generators_samples[1][0][0:4]
test_pyr_dst = generators_samples[1][1][0:4]
h,w,c = self.resolution,self.resolution,3
h_line = 13
result = []
for name, img, pyr in [ ['training data', test_src, test_pyr_src], \
['evaluating data',test_dst, test_pyr_dst] ]:
bgr_pred, pyr_pred = self.pose_est.extract(img)
hor_imgs = []
for i in range(len(img)):
img_info = np.ones ( (h,w,c) ) * 0.1
i_pyr = pyr[i]
i_pyr_pred = pyr_pred[i]
lines = ["%.4f %.4f %.4f" % (i_pyr[0],i_pyr[1],i_pyr[2]),
"%.4f %.4f %.4f" % (i_pyr_pred[0],i_pyr_pred[1],i_pyr_pred[2]) ]
lines_count = len(lines)
for ln in range(lines_count):
img_info[ ln*h_line:(ln+1)*h_line, 0:w] += \
imagelib.get_text_image ( (h_line,w,c), lines[ln], color=[0.8]*c )
hor_imgs.append ( np.concatenate ( (
img[i,:,:,0:3],
bgr_pred[i],
img_info
), axis=1) )
result += [ (name, np.concatenate (hor_imgs, axis=0)) ]
return result

View file

@ -1 +0,0 @@
from .Model import Model

View file

@ -1,169 +0,0 @@
import numpy as np
from nnlib import nnlib
from models import ModelBase
from facelib import FaceType
from samplelib import *
from interact import interact as io
class Model(ModelBase):
#override
def onInitializeOptions(self, is_first_run, ask_override):
if is_first_run or ask_override:
def_pixel_loss = self.options.get('pixel_loss', False)
self.options['pixel_loss'] = io.input_bool ("Use pixel loss? (y/n, ?:help skip: n/default ) : ", def_pixel_loss, help_message="Pixel loss may help to enhance fine details and stabilize face color. Use it only if quality does not improve over time.")
else:
self.options['pixel_loss'] = self.options.get('pixel_loss', False)
#override
def onInitialize(self):
exec(nnlib.import_all(), locals(), globals())
self.set_vram_batch_requirements( {4.5:4} )
ae_input_layer = Input(shape=(128, 128, 3))
mask_layer = Input(shape=(128, 128, 1)) #same as output
self.encoder, self.decoder_src, self.decoder_dst = self.Build(ae_input_layer)
if not self.is_first_run():
weights_to_load = [ [self.encoder , 'encoder.h5'],
[self.decoder_src, 'decoder_src.h5'],
[self.decoder_dst, 'decoder_dst.h5']
]
self.load_weights_safe(weights_to_load)
rec_src = self.decoder_src(self.encoder(ae_input_layer))
rec_dst = self.decoder_dst(self.encoder(ae_input_layer))
self.autoencoder_src = Model([ae_input_layer,mask_layer], rec_src)
self.autoencoder_dst = Model([ae_input_layer,mask_layer], rec_dst)
self.autoencoder_src.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), loss=[DSSIMMSEMaskLoss(mask_layer, is_mse=self.options['pixel_loss']), 'mse'] )
self.autoencoder_dst.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), loss=[DSSIMMSEMaskLoss(mask_layer, is_mse=self.options['pixel_loss']), 'mse'] )
self.convert = K.function([ae_input_layer], rec_src)
if self.is_training_mode:
t = SampleProcessor.Types
output_sample_types=[ { 'types': (t.IMG_WARPED_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_BGR), 'resolution':128},
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_BGR), 'resolution':128},
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_M), 'resolution':128} ]
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, scale_range=np.array([-0.05, 0.05]) ),
output_sample_types=output_sample_types),
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
output_sample_types=output_sample_types)
])
#override
def get_model_filename_list(self):
return [[self.encoder, 'encoder.h5'],
[self.decoder_src, 'decoder_src.h5'],
[self.decoder_dst, 'decoder_dst.h5']]
#override
def onSave(self):
self.save_weights_safe( self.get_model_filename_list() )
#override
def onTrainOneIter(self, sample, generators_list):
warped_src, target_src, target_src_mask = sample[0]
warped_dst, target_dst, target_dst_mask = sample[1]
loss_src = self.autoencoder_src.train_on_batch( [warped_src, target_src_mask], [target_src, target_src_mask] )
loss_dst = self.autoencoder_dst.train_on_batch( [warped_dst, target_dst_mask], [target_dst, target_dst_mask] )
return ( ('loss_src', loss_src[0]), ('loss_dst', loss_dst[0]) )
#override
def onGetPreview(self, sample):
test_A = sample[0][1][0:4] #first 4 samples
test_A_m = sample[0][2][0:4] #first 4 samples
test_B = sample[1][1][0:4]
test_B_m = sample[1][2][0:4]
AA, mAA = self.autoencoder_src.predict([test_A, test_A_m])
AB, mAB = self.autoencoder_src.predict([test_B, test_B_m])
BB, mBB = self.autoencoder_dst.predict([test_B, test_B_m])
mAA = np.repeat ( mAA, (3,), -1)
mAB = np.repeat ( mAB, (3,), -1)
mBB = np.repeat ( mBB, (3,), -1)
st = []
for i in range(0, len(test_A)):
st.append ( np.concatenate ( (
test_A[i,:,:,0:3],
AA[i],
#mAA[i],
test_B[i,:,:,0:3],
BB[i],
#mBB[i],
AB[i],
#mAB[i]
), axis=1) )
return [ ('DF', np.concatenate ( st, axis=0 ) ) ]
def predictor_func (self, face=None, dummy_predict=False):
if dummy_predict:
self.convert ([ np.zeros ( (1, 128, 128, 3), dtype=np.float32 ) ])
else:
x, mx = self.convert ( [ face[np.newaxis,...] ] )
return x[0], mx[0][...,0]
#override
def get_ConverterConfig(self):
import converters
return self.predictor_func, (128,128,3), converters.ConverterConfigMasked(face_type=FaceType.FULL, default_mode='seamless')
def Build(self, input_layer):
exec(nnlib.code_import_all, locals(), globals())
def downscale (dim):
def func(x):
return LeakyReLU(0.1)(Conv2D(dim, 5, strides=2, padding='same')(x))
return func
def upscale (dim):
def func(x):
return PixelShuffler()(LeakyReLU(0.1)(Conv2D(dim * 4, 3, strides=1, padding='same')(x)))
return func
def Encoder(input_layer):
x = input_layer
x = downscale(128)(x)
x = downscale(256)(x)
x = downscale(512)(x)
x = downscale(1024)(x)
x = Dense(512)(Flatten()(x))
x = Dense(8 * 8 * 512)(x)
x = Reshape((8, 8, 512))(x)
x = upscale(512)(x)
return Model(input_layer, x)
def Decoder():
input_ = Input(shape=(16, 16, 512))
x = input_
x = upscale(512)(x)
x = upscale(256)(x)
x = upscale(128)(x)
y = input_ #mask decoder
y = upscale(512)(y)
y = upscale(256)(y)
y = upscale(128)(y)
x = Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
y = Conv2D(1, kernel_size=5, padding='same', activation='sigmoid')(y)
return Model(input_, [x,y])
return Encoder(input_layer), Decoder(), Decoder()

View file

@ -1 +0,0 @@
from .Model import Model

View file

@ -1,203 +0,0 @@
import numpy as np
from nnlib import nnlib
from models import ModelBase
from facelib import FaceType
from samplelib import *
from interact import interact as io
class Model(ModelBase):
#override
def onInitializeOptions(self, is_first_run, ask_override):
if is_first_run:
self.options['lighter_ae'] = io.input_bool ("Use lightweight autoencoder? (y/n, ?:help skip:n) : ", False, help_message="Lightweight autoencoder is faster, requires less VRAM, sacrificing overall quality. If your GPU VRAM <= 4, you should to choose this option.")
else:
default_lighter_ae = self.options.get('created_vram_gb', 99) <= 4 #temporally support old models, deprecate in future
if 'created_vram_gb' in self.options.keys():
self.options.pop ('created_vram_gb')
self.options['lighter_ae'] = self.options.get('lighter_ae', default_lighter_ae)
if is_first_run or ask_override:
def_pixel_loss = self.options.get('pixel_loss', False)
self.options['pixel_loss'] = io.input_bool ("Use pixel loss? (y/n, ?:help skip: n/default ) : ", def_pixel_loss, help_message="Pixel loss may help to enhance fine details and stabilize face color. Use it only if quality does not improve over time.")
else:
self.options['pixel_loss'] = self.options.get('pixel_loss', False)
#override
def onInitialize(self):
exec(nnlib.import_all(), locals(), globals())
self.set_vram_batch_requirements( {2.5:4} )
bgr_shape, mask_shape, self.encoder, self.decoder_src, self.decoder_dst = self.Build( self.options['lighter_ae'] )
if not self.is_first_run():
weights_to_load = [ [self.encoder , 'encoder.h5'],
[self.decoder_src, 'decoder_src.h5'],
[self.decoder_dst, 'decoder_dst.h5']
]
self.load_weights_safe(weights_to_load)
input_src_bgr = Input(bgr_shape)
input_src_mask = Input(mask_shape)
input_dst_bgr = Input(bgr_shape)
input_dst_mask = Input(mask_shape)
rec_src_bgr, rec_src_mask = self.decoder_src( self.encoder(input_src_bgr) )
rec_dst_bgr, rec_dst_mask = self.decoder_dst( self.encoder(input_dst_bgr) )
self.ae = Model([input_src_bgr,input_src_mask,input_dst_bgr,input_dst_mask], [rec_src_bgr, rec_src_mask, rec_dst_bgr, rec_dst_mask] )
self.ae.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999),
loss=[ DSSIMMSEMaskLoss(input_src_mask, is_mse=self.options['pixel_loss']), 'mae', DSSIMMSEMaskLoss(input_dst_mask, is_mse=self.options['pixel_loss']), 'mae' ] )
self.src_view = K.function([input_src_bgr],[rec_src_bgr, rec_src_mask])
self.dst_view = K.function([input_dst_bgr],[rec_dst_bgr, rec_dst_mask])
if self.is_training_mode:
t = SampleProcessor.Types
output_sample_types=[ { 'types': (t.IMG_WARPED_TRANSFORMED, t.FACE_TYPE_HALF, t.MODE_BGR), 'resolution':128},
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_HALF, t.MODE_BGR), 'resolution':128},
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_HALF, t.MODE_M), 'resolution':128} ]
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, scale_range=np.array([-0.05, 0.05]) ),
output_sample_types=output_sample_types ),
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
output_sample_types=output_sample_types )
])
#override
def get_model_filename_list(self):
return [[self.encoder, 'encoder.h5'],
[self.decoder_src, 'decoder_src.h5'],
[self.decoder_dst, 'decoder_dst.h5']]
#override
def onSave(self):
self.save_weights_safe( self.get_model_filename_list() )
#override
def onTrainOneIter(self, sample, generators_list):
warped_src, target_src, target_src_mask = sample[0]
warped_dst, target_dst, target_dst_mask = sample[1]
total, loss_src_bgr, loss_src_mask, loss_dst_bgr, loss_dst_mask = self.ae.train_on_batch( [warped_src, target_src_mask, warped_dst, target_dst_mask], [target_src, target_src_mask, target_dst, target_dst_mask] )
return ( ('loss_src', loss_src_bgr), ('loss_dst', loss_dst_bgr) )
#override
def onGetPreview(self, sample):
test_A = sample[0][1][0:4] #first 4 samples
test_A_m = sample[0][2][0:4] #first 4 samples
test_B = sample[1][1][0:4]
test_B_m = sample[1][2][0:4]
AA, mAA = self.src_view([test_A])
AB, mAB = self.src_view([test_B])
BB, mBB = self.dst_view([test_B])
mAA = np.repeat ( mAA, (3,), -1)
mAB = np.repeat ( mAB, (3,), -1)
mBB = np.repeat ( mBB, (3,), -1)
st = []
for i in range(0, len(test_A)):
st.append ( np.concatenate ( (
test_A[i,:,:,0:3],
AA[i],
#mAA[i],
test_B[i,:,:,0:3],
BB[i],
#mBB[i],
AB[i],
#mAB[i]
), axis=1) )
return [ ('H128', np.concatenate ( st, axis=0 ) ) ]
def predictor_func (self, face=None, dummy_predict=False):
if dummy_predict:
self.src_view ([ np.zeros ( (1, 128, 128, 3), dtype=np.float32 ) ])
else:
x, mx = self.src_view ( [ face[np.newaxis,...] ] )
return x[0], mx[0][...,0]
#override
def get_ConverterConfig(self):
import converters
return self.predictor_func, (128,128,3), converters.ConverterConfigMasked(face_type=FaceType.HALF, default_mode='seamless')
def Build(self, lighter_ae):
exec(nnlib.code_import_all, locals(), globals())
bgr_shape = (128, 128, 3)
mask_shape = (128, 128, 1)
def downscale (dim):
def func(x):
return LeakyReLU(0.1)(Conv2D(dim, 5, strides=2, padding='same')(x))
return func
def upscale (dim):
def func(x):
return PixelShuffler()(LeakyReLU(0.1)(Conv2D(dim * 4, 3, strides=1, padding='same')(x)))
return func
def Encoder(input_shape):
input_layer = Input(input_shape)
x = input_layer
if not lighter_ae:
x = downscale(128)(x)
x = downscale(256)(x)
x = downscale(512)(x)
x = downscale(1024)(x)
x = Dense(512)(Flatten()(x))
x = Dense(8 * 8 * 512)(x)
x = Reshape((8, 8, 512))(x)
x = upscale(512)(x)
else:
x = downscale(128)(x)
x = downscale(256)(x)
x = downscale(512)(x)
x = downscale(1024)(x)
x = Dense(256)(Flatten()(x))
x = Dense(8 * 8 * 256)(x)
x = Reshape((8, 8, 256))(x)
x = upscale(256)(x)
return Model(input_layer, x)
def Decoder():
if not lighter_ae:
input_ = Input(shape=(16, 16, 512))
x = input_
x = upscale(512)(x)
x = upscale(256)(x)
x = upscale(128)(x)
y = input_ #mask decoder
y = upscale(512)(y)
y = upscale(256)(y)
y = upscale(128)(y)
else:
input_ = Input(shape=(16, 16, 256))
x = input_
x = upscale(256)(x)
x = upscale(128)(x)
x = upscale(64)(x)
y = input_ #mask decoder
y = upscale(256)(y)
y = upscale(128)(y)
y = upscale(64)(y)
x = Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
y = Conv2D(1, kernel_size=5, padding='same', activation='sigmoid')(y)
return Model(input_, [x,y])
return bgr_shape, mask_shape, Encoder(bgr_shape), Decoder(), Decoder()

View file

@ -1 +0,0 @@
from .Model import Model

View file

@ -1,200 +0,0 @@
import numpy as np
from nnlib import nnlib
from models import ModelBase
from facelib import FaceType
from samplelib import *
from interact import interact as io
class Model(ModelBase):
#override
def onInitializeOptions(self, is_first_run, ask_override):
if is_first_run:
self.options['lighter_ae'] = io.input_bool ("Use lightweight autoencoder? (y/n, ?:help skip:n) : ", False, help_message="Lightweight autoencoder is faster, requires less VRAM, sacrificing overall quality. If your GPU VRAM <= 4, you should to choose this option.")
else:
default_lighter_ae = self.options.get('created_vram_gb', 99) <= 4 #temporally support old models, deprecate in future
if 'created_vram_gb' in self.options.keys():
self.options.pop ('created_vram_gb')
self.options['lighter_ae'] = self.options.get('lighter_ae', default_lighter_ae)
if is_first_run or ask_override:
def_pixel_loss = self.options.get('pixel_loss', False)
self.options['pixel_loss'] = io.input_bool ("Use pixel loss? (y/n, ?:help skip: n/default ) : ", def_pixel_loss, help_message="Pixel loss may help to enhance fine details and stabilize face color. Use it only if quality does not improve over time.")
else:
self.options['pixel_loss'] = self.options.get('pixel_loss', False)
#override
def onInitialize(self):
exec(nnlib.import_all(), locals(), globals())
self.set_vram_batch_requirements( {1.5:4} )
bgr_shape, mask_shape, self.encoder, self.decoder_src, self.decoder_dst = self.Build(self.options['lighter_ae'])
if not self.is_first_run():
weights_to_load = [ [self.encoder , 'encoder.h5'],
[self.decoder_src, 'decoder_src.h5'],
[self.decoder_dst, 'decoder_dst.h5']
]
self.load_weights_safe(weights_to_load)
input_src_bgr = Input(bgr_shape)
input_src_mask = Input(mask_shape)
input_dst_bgr = Input(bgr_shape)
input_dst_mask = Input(mask_shape)
rec_src_bgr, rec_src_mask = self.decoder_src( self.encoder(input_src_bgr) )
rec_dst_bgr, rec_dst_mask = self.decoder_dst( self.encoder(input_dst_bgr) )
self.ae = Model([input_src_bgr,input_src_mask,input_dst_bgr,input_dst_mask], [rec_src_bgr, rec_src_mask, rec_dst_bgr, rec_dst_mask] )
self.ae.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), loss=[ DSSIMMSEMaskLoss(input_src_mask, is_mse=self.options['pixel_loss']), 'mae', DSSIMMSEMaskLoss(input_dst_mask, is_mse=self.options['pixel_loss']), 'mae' ] )
self.src_view = K.function([input_src_bgr],[rec_src_bgr, rec_src_mask])
self.dst_view = K.function([input_dst_bgr],[rec_dst_bgr, rec_dst_mask])
if self.is_training_mode:
t = SampleProcessor.Types
output_sample_types=[ { 'types': (t.IMG_WARPED_TRANSFORMED, t.FACE_TYPE_HALF, t.MODE_BGR), 'resolution':64},
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_HALF, t.MODE_BGR), 'resolution':64},
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_HALF, t.MODE_M), 'resolution':64} ]
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, scale_range=np.array([-0.05, 0.05]) ),
output_sample_types=output_sample_types),
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
output_sample_types=output_sample_types)
])
#override
def get_model_filename_list(self):
return [[self.encoder, 'encoder.h5'],
[self.decoder_src, 'decoder_src.h5'],
[self.decoder_dst, 'decoder_dst.h5']]
#override
def onSave(self):
self.save_weights_safe( self.get_model_filename_list() )
#override
def onTrainOneIter(self, sample, generators_list):
warped_src, target_src, target_src_full_mask = sample[0]
warped_dst, target_dst, target_dst_full_mask = sample[1]
total, loss_src_bgr, loss_src_mask, loss_dst_bgr, loss_dst_mask = self.ae.train_on_batch( [warped_src, target_src_full_mask, warped_dst, target_dst_full_mask], [target_src, target_src_full_mask, target_dst, target_dst_full_mask] )
return ( ('loss_src', loss_src_bgr), ('loss_dst', loss_dst_bgr) )
#override
def onGetPreview(self, sample):
test_A = sample[0][1][0:4] #first 4 samples
test_A_m = sample[0][2][0:4]
test_B = sample[1][1][0:4]
test_B_m = sample[1][2][0:4]
AA, mAA = self.src_view([test_A])
AB, mAB = self.src_view([test_B])
BB, mBB = self.dst_view([test_B])
mAA = np.repeat ( mAA, (3,), -1)
mAB = np.repeat ( mAB, (3,), -1)
mBB = np.repeat ( mBB, (3,), -1)
st = []
for i in range(0, len(test_A)):
st.append ( np.concatenate ( (
test_A[i,:,:,0:3],
AA[i],
#mAA[i],
test_B[i,:,:,0:3],
BB[i],
#mBB[i],
AB[i],
#mAB[i]
), axis=1) )
return [ ('H64', np.concatenate ( st, axis=0 ) ) ]
def predictor_func (self, face=None, dummy_predict=False):
if dummy_predict:
self.src_view ([ np.zeros ( (1, 64, 64, 3), dtype=np.float32 ) ])
else:
x, mx = self.src_view ( [ face[np.newaxis,...] ] )
return x[0], mx[0][...,0]
#override
def get_ConverterConfig(self):
import converters
return self.predictor_func, (64,64,3), converters.ConverterConfigMasked(face_type=FaceType.HALF, default_mode='seamless')
def Build(self, lighter_ae):
exec(nnlib.code_import_all, locals(), globals())
bgr_shape = (64, 64, 3)
mask_shape = (64, 64, 1)
def downscale (dim):
def func(x):
return LeakyReLU(0.1)(Conv2D(dim, 5, strides=2, padding='same')(x))
return func
def upscale (dim):
def func(x):
return PixelShuffler()(LeakyReLU(0.1)(Conv2D(dim * 4, 3, strides=1, padding='same')(x)))
return func
def Encoder(input_shape):
input_layer = Input(input_shape)
x = input_layer
if not lighter_ae:
x = downscale(128)(x)
x = downscale(256)(x)
x = downscale(512)(x)
x = downscale(1024)(x)
x = Dense(1024)(Flatten()(x))
x = Dense(4 * 4 * 1024)(x)
x = Reshape((4, 4, 1024))(x)
x = upscale(512)(x)
else:
x = downscale(128)(x)
x = downscale(256)(x)
x = downscale(512)(x)
x = downscale(768)(x)
x = Dense(512)(Flatten()(x))
x = Dense(4 * 4 * 512)(x)
x = Reshape((4, 4, 512))(x)
x = upscale(256)(x)
return Model(input_layer, x)
def Decoder():
if not lighter_ae:
input_ = Input(shape=(8, 8, 512))
x = input_
x = upscale(512)(x)
x = upscale(256)(x)
x = upscale(128)(x)
else:
input_ = Input(shape=(8, 8, 256))
x = input_
x = upscale(256)(x)
x = upscale(128)(x)
x = upscale(64)(x)
y = input_ #mask decoder
y = upscale(256)(y)
y = upscale(128)(y)
y = upscale(64)(y)
x = Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
y = Conv2D(1, kernel_size=5, padding='same', activation='sigmoid')(y)
return Model(input_, [x,y])
return bgr_shape, mask_shape, Encoder(bgr_shape), Decoder(), Decoder()

View file

@ -1 +0,0 @@
from .Model import Model

View file

@ -1,178 +0,0 @@
import numpy as np
from nnlib import nnlib
from models import ModelBase
from facelib import FaceType
from samplelib import *
from interact import interact as io
class Model(ModelBase):
#override
def onInitializeOptions(self, is_first_run, ask_override):
if is_first_run or ask_override:
def_pixel_loss = self.options.get('pixel_loss', False)
self.options['pixel_loss'] = io.input_bool ("Use pixel loss? (y/n, ?:help skip: n/default ) : ", def_pixel_loss, help_message="Pixel loss may help to enhance fine details and stabilize face color. Use it only if quality does not improve over time.")
else:
self.options['pixel_loss'] = self.options.get('pixel_loss', False)
#override
def onInitialize(self):
exec(nnlib.import_all(), locals(), globals())
self.set_vram_batch_requirements( {4.5:4} )
ae_input_layer = Input(shape=(128, 128, 3))
mask_layer = Input(shape=(128, 128, 1)) #same as output
self.encoder, self.decoder, self.inter_B, self.inter_AB = self.Build(ae_input_layer)
if not self.is_first_run():
weights_to_load = [ [self.encoder, 'encoder.h5'],
[self.decoder, 'decoder.h5'],
[self.inter_B, 'inter_B.h5'],
[self.inter_AB, 'inter_AB.h5']
]
self.load_weights_safe(weights_to_load)
code = self.encoder(ae_input_layer)
AB = self.inter_AB(code)
B = self.inter_B(code)
rec_src = self.decoder(Concatenate()([AB, AB]))
rec_dst = self.decoder(Concatenate()([B, AB]))
self.autoencoder_src = Model([ae_input_layer,mask_layer], rec_src )
self.autoencoder_dst = Model([ae_input_layer,mask_layer], rec_dst )
self.autoencoder_src.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), loss=[DSSIMMSEMaskLoss(mask_layer, is_mse=self.options['pixel_loss']), 'mse'] )
self.autoencoder_dst.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), loss=[DSSIMMSEMaskLoss(mask_layer, is_mse=self.options['pixel_loss']), 'mse'] )
self.convert = K.function([ae_input_layer],rec_src)
if self.is_training_mode:
t = SampleProcessor.Types
output_sample_types=[ { 'types': (t.IMG_WARPED_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_BGR), 'resolution':128},
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_BGR), 'resolution':128},
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_M), 'resolution':128} ]
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, scale_range=np.array([-0.05, 0.05]) ),
output_sample_types=output_sample_types),
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
output_sample_types=output_sample_types)
])
#override
def get_model_filename_list(self):
return [[self.encoder, 'encoder.h5'],
[self.decoder, 'decoder.h5'],
[self.inter_B, 'inter_B.h5'],
[self.inter_AB, 'inter_AB.h5']]
#override
def onSave(self):
self.save_weights_safe( self.get_model_filename_list() )
#override
def onTrainOneIter(self, sample, generators_list):
warped_src, target_src, target_src_mask = sample[0]
warped_dst, target_dst, target_dst_mask = sample[1]
loss_src = self.autoencoder_src.train_on_batch( [warped_src, target_src_mask], [target_src, target_src_mask] )
loss_dst = self.autoencoder_dst.train_on_batch( [warped_dst, target_dst_mask], [target_dst, target_dst_mask] )
return ( ('loss_src', loss_src[0]), ('loss_dst', loss_dst[0]) )
#override
def onGetPreview(self, sample):
test_A = sample[0][1][0:4] #first 4 samples
test_A_m = sample[0][2][0:4] #first 4 samples
test_B = sample[1][1][0:4]
test_B_m = sample[1][2][0:4]
AA, mAA = self.autoencoder_src.predict([test_A, test_A_m])
AB, mAB = self.autoencoder_src.predict([test_B, test_B_m])
BB, mBB = self.autoencoder_dst.predict([test_B, test_B_m])
mAA = np.repeat ( mAA, (3,), -1)
mAB = np.repeat ( mAB, (3,), -1)
mBB = np.repeat ( mBB, (3,), -1)
st = []
for i in range(0, len(test_A)):
st.append ( np.concatenate ( (
test_A[i,:,:,0:3],
AA[i],
#mAA[i],
test_B[i,:,:,0:3],
BB[i],
#mBB[i],
AB[i],
#mAB[i]
), axis=1) )
return [ ('LIAEF128', np.concatenate ( st, axis=0 ) ) ]
def predictor_func (self, face=None, dummy_predict=False):
if dummy_predict:
self.convert ([ np.zeros ( (1, 128, 128, 3), dtype=np.float32 ) ])
else:
x, mx = self.convert ( [ face[np.newaxis,...] ] )
return x[0], mx[0][...,0]
#override
def get_ConverterConfig(self):
import converters
return self.predictor_func, (128,128,3), converters.ConverterConfigMasked(face_type=FaceType.FULL, default_mode='seamless')
def Build(self, input_layer):
exec(nnlib.code_import_all, locals(), globals())
def downscale (dim):
def func(x):
return LeakyReLU(0.1)(Conv2D(dim, 5, strides=2, padding='same')(x))
return func
def upscale (dim):
def func(x):
return PixelShuffler()(LeakyReLU(0.1)(Conv2D(dim * 4, 3, strides=1, padding='same')(x)))
return func
def Encoder():
x = input_layer
x = downscale(128)(x)
x = downscale(256)(x)
x = downscale(512)(x)
x = downscale(1024)(x)
x = Flatten()(x)
return Model(input_layer, x)
def Intermediate():
input_layer = Input(shape=(None, 8 * 8 * 1024))
x = input_layer
x = Dense(256)(x)
x = Dense(8 * 8 * 512)(x)
x = Reshape((8, 8, 512))(x)
x = upscale(512)(x)
return Model(input_layer, x)
def Decoder():
input_ = Input(shape=(16, 16, 1024))
x = input_
x = upscale(512)(x)
x = upscale(256)(x)
x = upscale(128)(x)
x = Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
y = input_ #mask decoder
y = upscale(512)(y)
y = upscale(256)(y)
y = upscale(128)(y)
y = Conv2D(1, kernel_size=5, padding='same', activation='sigmoid' )(y)
return Model(input_, [x,y])
return Encoder(), Decoder(), Intermediate(), Intermediate()

View file

@ -1 +0,0 @@
from .Model import Model

View file

@ -1,261 +1,503 @@
import multiprocessing
from functools import partial
import numpy as np
import mathlib
from core import mathlib
from core.interact import interact as io
from core.leras import nn
from facelib import FaceType
from interact import interact as io
from models import ModelBase
from nnlib import nnlib
from samplelib import *
class Quick96Model(ModelBase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs,
ask_enable_autobackup=False,
ask_write_preview_history=False,
ask_target_iter=True,
ask_batch_size=False,
ask_random_flip=False)
class QModel(ModelBase):
#override
def onInitialize(self):
exec(nnlib.import_all(), locals(), globals())
self.set_vram_batch_requirements({1.5:2,2:4})
def on_initialize(self):
nn.initialize()
tf = nn.tf
conv_kernel_initializer = nn.initializers.ca
class Downscale(nn.ModelBase):
def __init__(self, in_ch, out_ch, kernel_size=5, dilations=1, subpixel=True, use_activator=True, *kwargs ):
self.in_ch = in_ch
self.out_ch = out_ch
self.kernel_size = kernel_size
self.dilations = dilations
self.subpixel = subpixel
self.use_activator = use_activator
super().__init__(*kwargs)
def on_build(self, *args, **kwargs ):
self.conv1 = nn.Conv2D( self.in_ch,
self.out_ch // (4 if self.subpixel else 1),
kernel_size=self.kernel_size,
strides=1 if self.subpixel else 2,
padding='SAME', dilations=self.dilations, kernel_initializer=conv_kernel_initializer )
def forward(self, x):
x = self.conv1(x)
if self.subpixel:
x = tf.nn.space_to_depth(x, 2)
if self.use_activator:
x = tf.nn.leaky_relu(x, 0.2)
return x
def get_out_ch(self):
return (self.out_ch // 4) * 4
class DownscaleBlock(nn.ModelBase):
def on_build(self, in_ch, ch, n_downscales, kernel_size, dilations=1, subpixel=True):
self.downs = []
last_ch = in_ch
for i in range(n_downscales):
cur_ch = ch*( min(2**i, 8) )
self.downs.append ( Downscale(last_ch, cur_ch, kernel_size=kernel_size, dilations=dilations, subpixel=subpixel) )
last_ch = self.downs[-1].get_out_ch()
def forward(self, inp):
x = inp
for down in self.downs:
x = down(x)
return x
class Upscale(nn.ModelBase):
def on_build(self, in_ch, out_ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME', kernel_initializer=conv_kernel_initializer)
def forward(self, x):
x = self.conv1(x)
x = tf.nn.leaky_relu(x, 0.2)
x = tf.nn.depth_to_space(x, 2)
return x
class UpdownResidualBlock(nn.ModelBase):
def on_build(self, ch, inner_ch, kernel_size=3 ):
self.up = Upscale (ch, inner_ch, kernel_size=kernel_size)
self.res = ResidualBlock (inner_ch, kernel_size=kernel_size)
self.down = Downscale (inner_ch, ch, kernel_size=kernel_size, use_activator=False)
def forward(self, inp):
x = self.up(inp)
x = upx = self.res(x)
x = self.down(x)
x = x + inp
x = tf.nn.leaky_relu(x, 0.2)
return x, upx
class ResidualBlock(nn.ModelBase):
def on_build(self, ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', kernel_initializer=conv_kernel_initializer)
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', kernel_initializer=conv_kernel_initializer)
def forward(self, inp):
x = self.conv1(inp)
x = tf.nn.leaky_relu(x, 0.2)
x = self.conv2(x)
x = inp + x
x = tf.nn.leaky_relu(x, 0.2)
return x
class Encoder(nn.ModelBase):
def on_build(self, in_ch, e_ch):
self.down1 = DownscaleBlock(in_ch, e_ch, n_downscales=4, kernel_size=5)
def forward(self, inp):
return nn.tf_flatten(self.down1(inp))
class Inter(nn.ModelBase):
def __init__(self, in_ch, lowest_dense_res, ae_ch, ae_out_ch, d_ch, **kwargs):
self.in_ch, self.lowest_dense_res, self.ae_ch, self.ae_out_ch, self.d_ch = in_ch, lowest_dense_res, ae_ch, ae_out_ch, d_ch
super().__init__(**kwargs)
def on_build(self):
in_ch, lowest_dense_res, ae_ch, ae_out_ch, d_ch = self.in_ch, self.lowest_dense_res, self.ae_ch, self.ae_out_ch, self.d_ch
self.dense1 = nn.Dense( in_ch, ae_ch, kernel_initializer=tf.initializers.orthogonal )
self.dense2 = nn.Dense( ae_ch, lowest_dense_res * lowest_dense_res * ae_out_ch, maxout_features=2, kernel_initializer=tf.initializers.orthogonal )
self.upscale1 = Upscale(ae_out_ch, d_ch*8)
self.res1 = ResidualBlock(d_ch*8)
def forward(self, inp):
x = self.dense1(inp)
x = self.dense2(x)
x = tf.reshape (x, (-1, lowest_dense_res, lowest_dense_res, self.ae_out_ch))
x = self.upscale1(x)
x = self.res1(x)
return x
def get_out_ch(self):
return self.ae_out_ch
class Decoder(nn.ModelBase):
def on_build(self, in_ch, d_ch):
self.upscale1 = Upscale(in_ch, d_ch*4)
self.res1 = UpdownResidualBlock(d_ch*4, d_ch*2)
self.upscale2 = Upscale(d_ch*4, d_ch*2)
self.res2 = UpdownResidualBlock(d_ch*2, d_ch)
self.upscale3 = Upscale(d_ch*2, d_ch*1)
self.res3 = UpdownResidualBlock(d_ch, d_ch//2)
self.upscalem1 = Upscale(in_ch, d_ch)
self.upscalem2 = Upscale(d_ch, d_ch//2)
self.upscalem3 = Upscale(d_ch//2, d_ch//2)
self.out_conv = nn.Conv2D( d_ch*1, 3, kernel_size=1, padding='SAME', kernel_initializer=conv_kernel_initializer)
self.out_convm = nn.Conv2D( d_ch//2, 1, kernel_size=1, padding='SAME', kernel_initializer=conv_kernel_initializer)
def forward(self, inp):
z = inp
x = self.upscale1(z)
x, upx = self.res1(x)
x = self.upscale2(x)
x = tf.nn.leaky_relu(x + upx, 0.2)
x, upx = self.res2(x)
x = self.upscale3(x)
x = tf.nn.leaky_relu(x + upx, 0.2)
x, upx = self.res3(x)
"""
x = self.upscale1 (z)
x = self.res1 (x)
x = self.upscale2 (x)
x = self.res2 (x)
x = self.upscale3 (x)
x = self.res3 (x)
"""
y = self.upscalem1 (z)
y = self.upscalem2 (y)
y = self.upscalem3 (y)
return tf.nn.sigmoid(self.out_conv(x)), \
tf.nn.sigmoid(self.out_convm(y))
device_config = nn.getCurrentDeviceConfig()
devices = device_config.devices
resolution = self.resolution = 96
ae_dims = 128
e_dims = 128
d_dims = 64
self.pretrain = True
self.pretrain_just_disabled = False
class CommonModel(object):
def downscale (self, dim, kernel_size=5, dilation_rate=1):
def func(x):
return SubpixelDownscaler()(ELU()(Conv2D(dim // 4, kernel_size=kernel_size, strides=1, dilation_rate=dilation_rate, padding='same')(x)))
return func
masked_training = True
def upscale (self, dim, size=(2,2)):
def func(x):
return SubpixelUpscaler(size=size)(ELU()(Conv2D(dim * np.prod(size) , kernel_size=3, strides=1, padding='same')(x)))
return func
models_opt_on_gpu = len(devices) == 1 and devices[0].total_mem_gb >= 4
models_opt_device = '/GPU:0' if models_opt_on_gpu and self.is_training else '/CPU:0'
optimizer_vars_on_cpu = models_opt_device=='/CPU:0'
def ResidualBlock(self, dim):
def func(inp):
x = Conv2D(dim, kernel_size=3, padding='same')(inp)
x = LeakyReLU(0.2)(x)
x = Conv2D(dim, kernel_size=3, padding='same')(x)
x = Add()([x, inp])
x = LeakyReLU(0.2)(x)
return x
return func
input_nc = 3
output_nc = 3
bgr_shape = (resolution, resolution, output_nc)
mask_shape = (resolution, resolution, 1)
lowest_dense_res = resolution // 16
class QModel(CommonModel):
def __init__(self, resolution, ae_dims, e_dims, d_dims):
super().__init__()
bgr_shape = (resolution, resolution, 3)
mask_shape = (resolution, resolution, 1)
lowest_dense_res = resolution // 16
self.model_filename_list = []
def enc_flow():
def func(inp):
x = self.downscale(e_dims, 3, 1 )(inp)
x = self.downscale(e_dims*2, 3, 1 )(x)
x = self.downscale(e_dims*4, 3, 1 )(x)
x0 = self.downscale(e_dims*8, 3, 1 )(x)
x = self.downscale(e_dims, 3, 2 )(inp)
x = self.downscale(e_dims*2, 3, 2 )(x)
x = self.downscale(e_dims*4, 3, 2 )(x)
x1 = self.downscale(e_dims*8, 3, 2 )(x)
x = Concatenate()([x0,x1])
x = DenseMaxout(ae_dims, kernel_initializer='orthogonal')(Flatten()(x))
x = DenseMaxout(lowest_dense_res * lowest_dense_res * ae_dims, kernel_initializer='orthogonal')(x)
x = Reshape((lowest_dense_res, lowest_dense_res, ae_dims))(x)
x = self.ResidualBlock(ae_dims)(x)
x = self.upscale(d_dims*8)(x)
x = self.ResidualBlock(d_dims*8)(x)
return x
return func
def dec_flow():
def func(inp):
x = self.upscale(d_dims*4)(inp)
x = self.ResidualBlock(d_dims*4)(x)
x = self.upscale(d_dims*2)(x)
x = self.ResidualBlock(d_dims*2)(x)
x = self.upscale(d_dims)(x)
x = self.ResidualBlock(d_dims)(x)
y = self.upscale(d_dims)(inp)
y = self.upscale(d_dims//2)(y)
y = self.upscale(d_dims//4)(y)
return Conv2D(3, kernel_size=1, padding='same', activation='tanh')(x), \
Conv2D(1, kernel_size=1, padding='same', activation='sigmoid')(y)
with tf.device ('/CPU:0'):
#Place holders on CPU
self.warped_src = tf.placeholder (tf.float32, (None,)+bgr_shape)
self.warped_dst = tf.placeholder (tf.float32, (None,)+bgr_shape)
return func
self.target_src = tf.placeholder (tf.float32, (None,)+bgr_shape)
self.target_dst = tf.placeholder (tf.float32, (None,)+bgr_shape)
self.encoder = modelify(enc_flow()) ( Input(bgr_shape) )
self.target_srcm = tf.placeholder (tf.float32, (None,)+mask_shape)
self.target_dstm = tf.placeholder (tf.float32, (None,)+mask_shape)
sh = K.int_shape( self.encoder.outputs[0] )[1:]
self.decoder_src = modelify(dec_flow()) ( Input(sh) )
self.decoder_dst = modelify(dec_flow()) ( Input(sh) )
# Initializing model classes
with tf.device (models_opt_device):
self.encoder = Encoder(in_ch=input_nc, e_ch=e_dims, name='encoder')
encoder_out_ch = self.encoder.compute_output_shape ( (tf.float32, (None,resolution,resolution,input_nc)))[-1]
self.src_trainable_weights = self.encoder.trainable_weights + self.decoder_src.trainable_weights
self.dst_trainable_weights = self.encoder.trainable_weights + self.decoder_dst.trainable_weights
self.inter = Inter (in_ch=encoder_out_ch, lowest_dense_res=lowest_dense_res, ae_ch=ae_dims, ae_out_ch=ae_dims, d_ch=d_dims, name='inter')
inter_out_ch = self.inter.compute_output_shape ( (tf.float32, (None,encoder_out_ch)))[-1]
self.warped_src, self.warped_dst = Input(bgr_shape), Input(bgr_shape)
self.target_src, self.target_dst = Input(bgr_shape), Input(bgr_shape)
self.target_srcm, self.target_dstm = Input(mask_shape), Input(mask_shape)
self.src_code = self.encoder(self.warped_src)
self.dst_code = self.encoder(self.warped_dst)
self.decoder_src = Decoder(in_ch=inter_out_ch, d_ch=d_dims, name='decoder_src')
self.decoder_dst = Decoder(in_ch=inter_out_ch, d_ch=d_dims, name='decoder_dst')
self.pred_src_src, self.pred_src_srcm = self.decoder_src(self.src_code)
self.pred_dst_dst, self.pred_dst_dstm = self.decoder_dst(self.dst_code)
self.pred_src_dst, self.pred_src_dstm = self.decoder_src(self.dst_code)
self.model_filename_list += [ [self.encoder, 'encoder.npy' ],
[self.inter, 'inter.npy' ],
[self.decoder_src, 'decoder_src.npy'],
[self.decoder_dst, 'decoder_dst.npy'] ]
def get_model_filename_list(self, exclude_for_pretrain=False):
ar = []
if not exclude_for_pretrain:
ar += [ [self.encoder, 'encoder.h5'] ]
ar += [ [self.decoder_src, 'decoder_src.h5'],
[self.decoder_dst, 'decoder_dst.h5'] ]
return ar
if self.is_training:
self.src_dst_trainable_weights = self.encoder.get_weights() + self.decoder_src.get_weights() + self.decoder_dst.get_weights()
self.model = QModel (resolution, 128, 64, 64)
# Initialize optimizers
self.src_dst_opt = nn.TFRMSpropOptimizer(lr=2e-4, lr_dropout=0.3, name='src_dst_opt')
self.src_dst_opt.initialize_variables(self.src_dst_trainable_weights, vars_on_cpu=optimizer_vars_on_cpu )
self.model_filename_list += [ (self.src_dst_opt, 'src_dst_opt.npy') ]
loaded, not_loaded = [], self.model.get_model_filename_list()
if not self.is_first_run():
loaded, not_loaded = self.load_weights_safe(not_loaded)
if self.is_training:
# Adjust batch size for multiple GPU
gpu_count = max(1, len(devices) )
bs_per_gpu = max(1, 4 // gpu_count)
self.set_batch_size( gpu_count*bs_per_gpu)
CA_models = [ model for model, _ in not_loaded ]
self.CA_conv_weights_list = []
for model in CA_models:
for layer in model.layers:
if type(layer) == keras.layers.Conv2D:
self.CA_conv_weights_list += [layer.weights[0]] #- is Conv2D kernel_weights
if self.is_training_mode:
lr_dropout = 0.3 if nnlib.device.backend != 'plaidML' else 0.0
self.src_dst_opt = RMSprop(lr=2e-4, lr_dropout=lr_dropout)
self.src_dst_mask_opt = RMSprop(lr=2e-4, lr_dropout=lr_dropout)
target_src_masked = self.model.target_src*self.model.target_srcm
target_dst_masked = self.model.target_dst*self.model.target_dstm
pred_src_src_masked = self.model.pred_src_src*self.model.target_srcm
pred_dst_dst_masked = self.model.pred_dst_dst*self.model.target_dstm
# Compute losses per GPU
gpu_pred_src_src_list = []
gpu_pred_dst_dst_list = []
gpu_pred_src_dst_list = []
gpu_pred_src_srcm_list = []
gpu_pred_dst_dstm_list = []
gpu_pred_src_dstm_list = []
src_loss = K.mean ( 10*dssim(kernel_size=int(resolution/11.6),max_value=2.0)( target_src_masked+1, pred_src_src_masked+1) )
src_loss += K.mean ( 10*K.square( target_src_masked - pred_src_src_masked ) )
src_loss += K.mean(K.square(self.model.target_srcm-self.model.pred_src_srcm))
gpu_src_losses = []
gpu_dst_losses = []
gpu_src_dst_loss_gvs = []
dst_loss = K.mean( 10*dssim(kernel_size=int(resolution/11.6),max_value=2.0)(target_dst_masked+1, pred_dst_dst_masked+1) )
dst_loss += K.mean( 10*K.square( target_dst_masked - pred_dst_dst_masked ) )
dst_loss += K.mean(K.square(self.model.target_dstm-self.model.pred_dst_dstm))
for gpu_id in range(gpu_count):
with tf.device( f'/GPU:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
with tf.device(f'/CPU:0'):
# slice on CPU, otherwise all batch data will be transfered to GPU first
gpu_warped_src = self.warped_src [batch_slice,:,:,:]
gpu_warped_dst = self.warped_dst [batch_slice,:,:,:]
gpu_target_src = self.target_src [batch_slice,:,:,:]
gpu_target_dst = self.target_dst [batch_slice,:,:,:]
gpu_target_srcm = self.target_srcm[batch_slice,:,:,:]
gpu_target_dstm = self.target_dstm[batch_slice,:,:,:]
self.src_train = K.function ([self.model.warped_src, self.model.target_src, self.model.target_srcm], [src_loss], self.src_dst_opt.get_updates( src_loss, self.model.src_trainable_weights) )
self.dst_train = K.function ([self.model.warped_dst, self.model.target_dst, self.model.target_dstm], [dst_loss], self.src_dst_opt.get_updates( dst_loss, self.model.dst_trainable_weights) )
self.AE_view = K.function ([self.model.warped_src, self.model.warped_dst], [self.model.pred_src_src, self.model.pred_dst_dst, self.model.pred_dst_dstm, self.model.pred_src_dst, self.model.pred_src_dstm])
# process model tensors
gpu_src_code = self.inter(self.encoder(gpu_warped_src))
gpu_dst_code = self.inter(self.encoder(gpu_warped_dst))
gpu_pred_src_src, gpu_pred_src_srcm = self.decoder_src(gpu_src_code)
gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder_dst(gpu_dst_code)
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder_src(gpu_dst_code)
gpu_pred_src_src_list.append(gpu_pred_src_src)
gpu_pred_dst_dst_list.append(gpu_pred_dst_dst)
gpu_pred_src_dst_list.append(gpu_pred_src_dst)
gpu_pred_src_srcm_list.append(gpu_pred_src_srcm)
gpu_pred_dst_dstm_list.append(gpu_pred_dst_dstm)
gpu_pred_src_dstm_list.append(gpu_pred_src_dstm)
gpu_target_srcm_blur = nn.tf_gaussian_blur(gpu_target_srcm, max(1, resolution // 32) )
gpu_target_dstm_blur = nn.tf_gaussian_blur(gpu_target_dstm, max(1, resolution // 32) )
gpu_target_dst_masked = gpu_target_dst*gpu_target_dstm_blur
gpu_target_dst_anti_masked = gpu_target_dst*(1.0 - gpu_target_dstm_blur)
gpu_target_srcmasked_opt = gpu_target_src*gpu_target_srcm_blur if masked_training else gpu_target_src
gpu_target_dst_masked_opt = gpu_target_dst_masked if masked_training else gpu_target_dst
gpu_pred_src_src_masked_opt = gpu_pred_src_src*gpu_target_srcm_blur if masked_training else gpu_pred_src_src
gpu_pred_dst_dst_masked_opt = gpu_pred_dst_dst*gpu_target_dstm_blur if masked_training else gpu_pred_dst_dst
gpu_psd_target_dst_masked = gpu_pred_src_dst*gpu_target_dstm_blur
gpu_psd_target_dst_anti_masked = gpu_pred_src_dst*(1.0 - gpu_target_dstm_blur)
gpu_src_loss = tf.reduce_mean ( 10*nn.tf_dssim(gpu_target_srcmasked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
gpu_src_loss += tf.reduce_mean ( 10*tf.square ( gpu_target_srcmasked_opt - gpu_pred_src_src_masked_opt ), axis=[1,2,3])
gpu_src_loss += tf.reduce_mean ( tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] )
gpu_dst_loss = tf.reduce_mean ( 10*nn.tf_dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dst_masked_opt- gpu_pred_dst_dst_masked_opt ), axis=[1,2,3])
gpu_dst_loss += tf.reduce_mean ( tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] )
gpu_src_losses += [gpu_src_loss]
gpu_dst_losses += [gpu_dst_loss]
gpu_src_dst_loss = gpu_src_loss + gpu_dst_loss
gpu_src_dst_loss_gvs += [ nn.tf_gradients ( gpu_src_dst_loss, self.src_dst_trainable_weights ) ]
# Average losses and gradients, and create optimizer update ops
with tf.device (models_opt_device):
if gpu_count == 1:
pred_src_src = gpu_pred_src_src_list[0]
pred_dst_dst = gpu_pred_dst_dst_list[0]
pred_src_dst = gpu_pred_src_dst_list[0]
pred_src_srcm = gpu_pred_src_srcm_list[0]
pred_dst_dstm = gpu_pred_dst_dstm_list[0]
pred_src_dstm = gpu_pred_src_dstm_list[0]
src_loss = gpu_src_losses[0]
dst_loss = gpu_dst_losses[0]
src_dst_loss_gv = gpu_src_dst_loss_gvs[0]
else:
pred_src_src = tf.concat(gpu_pred_src_src_list, 0)
pred_dst_dst = tf.concat(gpu_pred_dst_dst_list, 0)
pred_src_dst = tf.concat(gpu_pred_src_dst_list, 0)
pred_src_srcm = tf.concat(gpu_pred_src_srcm_list, 0)
pred_dst_dstm = tf.concat(gpu_pred_dst_dstm_list, 0)
pred_src_dstm = tf.concat(gpu_pred_src_dstm_list, 0)
src_loss = nn.tf_average_tensor_list(gpu_src_losses)
dst_loss = nn.tf_average_tensor_list(gpu_dst_losses)
src_dst_loss_gv = nn.tf_average_gv_list (gpu_src_dst_loss_gvs)
src_dst_loss_gv_op = self.src_dst_opt.get_update_op (src_dst_loss_gv)
# Initializing training and view functions
def src_dst_train(warped_src, target_src, target_srcm, \
warped_dst, target_dst, target_dstm):
s, d, _ = nn.tf_sess.run ( [ src_loss, dst_loss, src_dst_loss_gv_op],
feed_dict={self.warped_src :warped_src,
self.target_src :target_src,
self.target_srcm:target_srcm,
self.warped_dst :warped_dst,
self.target_dst :target_dst,
self.target_dstm:target_dstm,
})
s = np.mean(s)
d = np.mean(d)
return s, d
self.src_dst_train = src_dst_train
def AE_view(warped_src, warped_dst):
return nn.tf_sess.run ( [pred_src_src, pred_dst_dst, pred_dst_dstm, pred_src_dst, pred_src_dstm],
feed_dict={self.warped_src:warped_src,
self.warped_dst:warped_dst})
self.AE_view = AE_view
else:
self.AE_convert = K.function ([self.model.warped_dst],[ self.model.pred_src_dst, self.model.pred_dst_dstm, self.model.pred_src_dstm ])
# Initializing merge function
with tf.device( f'/GPU:0' if len(devices) != 0 else f'/CPU:0'):
gpu_dst_code = self.inter(self.encoder(self.warped_dst))
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder_src(gpu_dst_code)
_, gpu_pred_dst_dstm = self.decoder_dst(gpu_dst_code)
if self.is_training_mode:
def AE_merge( warped_dst):
return nn.tf_sess.run ( [gpu_pred_src_dst, gpu_pred_dst_dstm, gpu_pred_src_dstm], feed_dict={self.warped_dst:warped_dst})
self.AE_merge = AE_merge
# Loading/initializing all models/optimizers weights
for model, filename in io.progress_bar_generator(self.model_filename_list, "Initializing models"):
do_init = self.is_first_run()
if self.pretrain_just_disabled:
if model == self.inter:
do_init = True
if not do_init:
do_init = not model.load_weights( self.get_strpath_storage_for_file(filename) )
if do_init and self.pretrained_model_path is not None:
pretrained_filepath = self.pretrained_model_path / filename
if pretrained_filepath.exists():
do_init = not model.load_weights(pretrained_filepath)
if do_init:
model.init_weights()
# initializing sample generators
if self.is_training:
t = SampleProcessor.Types
face_type = t.FACE_TYPE_FULL
training_data_src_path = self.training_data_src_path if not self.pretrain else self.get_pretraining_data_path()
training_data_dst_path = self.training_data_dst_path if not self.pretrain else self.get_pretraining_data_path()
cpu_count = multiprocessing.cpu_count()
src_generators_count = cpu_count // 2
dst_generators_count = cpu_count - src_generators_count
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=False, scale_range=np.array([-0.05, 0.05]) ),
output_sample_types = [ {'types' : (t.IMG_WARPED_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_BGR), 'resolution': resolution, 'normalize_tanh':True },
{'types' : (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_BGR), 'resolution': resolution, 'normalize_tanh':True },
{'types' : (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_M), 'resolution': resolution } ]
),
SampleGeneratorFace(training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=True if self.pretrain else False),
output_sample_types = [ {'types' : (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_BGR), 'resolution':resolution, },
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_BGR), 'resolution': resolution, },
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_M), 'resolution': resolution } ],
generators_count=src_generators_count ),
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=False, ),
output_sample_types = [ {'types' : (t.IMG_WARPED_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_BGR), 'resolution': resolution, 'normalize_tanh':True },
{'types' : (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_BGR), 'resolution': resolution, 'normalize_tanh':True },
{'types' : (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_M), 'resolution': resolution} ])
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=True if self.pretrain else False),
output_sample_types = [ {'types' : (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_BGR), 'resolution':resolution},
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_BGR), 'resolution': resolution},
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_M), 'resolution': resolution} ],
generators_count=dst_generators_count )
])
self.counter = 0
self.last_samples = None
#override
def get_model_filename_list(self):
return self.model.get_model_filename_list ()
return self.model_filename_list
#override
def onSave(self):
self.save_weights_safe( self.get_model_filename_list() )
for model, filename in io.progress_bar_generator(self.get_model_filename_list(), "Saving", leave=False):
model.save_weights ( self.get_strpath_storage_for_file(filename) )
#override
def on_success_train_one_iter(self):
if len(self.CA_conv_weights_list) != 0:
exec(nnlib.import_all(), locals(), globals())
CAInitializerMP ( self.CA_conv_weights_list )
self.CA_conv_weights_list = []
#override
def onTrainOneIter(self, generators_samples, generators_list):
warped_src, target_src, target_srcm = generators_samples[0]
warped_dst, target_dst, target_dstm = generators_samples[1]
self.counter += 1
if self.counter % 3 == 0:
src_loss, = self.src_train ([warped_src, target_src, target_srcm])
dst_loss, = self.dst_train ([warped_dst, target_dst, target_dstm])
def onTrainOneIter(self):
if self.get_iter() % 3 == 0 and self.last_samples is not None:
( (warped_src, target_src, target_srcm), \
(warped_dst, target_dst, target_dstm) ) = self.last_samples
src_loss, dst_loss = self.src_dst_train (target_src, target_src, target_srcm,
target_dst, target_dst, target_dstm)
else:
src_loss, = self.src_train ([target_src, target_src, target_srcm])
dst_loss, = self.dst_train ([target_dst, target_dst, target_dstm])
samples = self.last_samples = self.generate_next_samples()
( (warped_src, target_src, target_srcm), \
(warped_dst, target_dst, target_dstm) ) = samples
src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm,
warped_dst, target_dst, target_dstm)
return ( ('src_loss', src_loss), ('dst_loss', dst_loss), )
#override
def onGetPreview(self, sample):
test_S = sample[0][1][0:4] #first 4 samples
test_S_m = sample[0][2][0:4] #first 4 samples
test_D = sample[1][1][0:4]
test_D_m = sample[1][2][0:4]
def onGetPreview(self, samples):
n_samples = min(4, self.get_batch_size() )
S, D, SS, DD, DDM, SD, SDM = [test_S,test_D] + self.AE_view ([test_S, test_D])
S, D, SS, DD, SD, = [ np.clip(x/2+0.5, 0.0, 1.0) for x in [S, D, SS, DD, SD] ]
DDM, SDM, = [ np.clip( np.repeat (x, (3,), -1), 0, 1) for x in [DDM, SDM] ]
( (warped_src, target_src, target_srcm),
(warped_dst, target_dst, target_dstm) ) = \
[ [sample[0:n_samples] for sample in sample_list ]
for sample_list in samples ]
S, D, SS, DD, DDM, SD, SDM = [ np.clip(x, 0.0, 1.0) for x in ([target_src,target_dst] + self.AE_view (target_src, target_dst) ) ]
DDM, SDM, = [ np.repeat (x, (3,), -1) for x in [DDM, SDM] ]
result = []
st = []
for i in range(len(test_S)):
for i in range(n_samples):
ar = S[i], SS[i], D[i], DD[i], SD[i]
st.append ( np.concatenate ( ar, axis=1) )
result += [ ('Quick96', np.concatenate (st, axis=0 )), ]
st_m = []
for i in range(len(test_S)):
ar = S[i]*test_S_m[i], SS[i], D[i]*test_D_m[i], DD[i]*DDM[i], SD[i]*(DDM[i]*SDM[i])
for i in range(n_samples):
ar = S[i]*target_srcm[i], SS[i], D[i]*target_dstm[i], DD[i]*DDM[i], SD[i]*(DDM[i]*SDM[i])
st_m.append ( np.concatenate ( ar, axis=1) )
result += [ ('Quick96 masked', np.concatenate (st_m, axis=0 )), ]
return result
def predictor_func (self, face=None, dummy_predict=False):
if dummy_predict:
self.AE_convert ([ np.zeros ( (1, self.resolution, self.resolution, 3), dtype=np.float32 ) ])
else:
face = face * 2 - 1
bgr, mask_dst_dstm, mask_src_dstm = self.AE_convert ([face[np.newaxis,...]])
bgr = bgr /2 + 0.5
mask = mask_dst_dstm[0] * mask_src_dstm[0]
return bgr[0], mask[...,0]
def predictor_func (self, face=None):
bgr, mask_dst_dstm, mask_src_dstm = self.AE_merge (face[np.newaxis,...])
mask = mask_dst_dstm[0] * mask_src_dstm[0]
return bgr[0], mask[...,0]
#override
def get_ConverterConfig(self):
import converters
return self.predictor_func, (self.resolution, self.resolution, 3), converters.ConverterConfigMasked(face_type=FaceType.FULL,
default_mode='seamless', clip_hborder_mask_per=0.0625)
def get_MergerConfig(self):
face_type = FaceType.FULL
Model = Quick96Model
import merger
return self.predictor_func, (self.resolution, self.resolution, 3), merger.MergerConfigMasked(face_type=face_type,
default_mode = 'overlay',
clip_hborder_mask_per=0.0625 if (face_type != FaceType.HALF) else 0,
)
Model = QModel

View file

@ -1,568 +0,0 @@
from functools import partial
import numpy as np
import mathlib
from facelib import FaceType
from interact import interact as io
from models import ModelBase
from nnlib import nnlib
from samplelib import *
#SAE - Styled AutoEncoder
class SAEModel(ModelBase):
#override
def onInitializeOptions(self, is_first_run, ask_override):
yn_str = {True:'y',False:'n'}
default_resolution = 128
default_archi = 'df'
default_face_type = 'f'
if is_first_run:
resolution = io.input_int("Resolution ( 64-256 ?:help skip:128) : ", default_resolution, help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16.")
resolution = np.clip (resolution, 64, 256)
while np.modf(resolution / 16)[0] != 0.0:
resolution -= 1
self.options['resolution'] = resolution
self.options['face_type'] = io.input_str ("Half or Full face? (h/f, ?:help skip:f) : ", default_face_type, ['h','f'], help_message="Half face has better resolution, but covers less area of cheeks.").lower()
else:
self.options['resolution'] = self.options.get('resolution', default_resolution)
self.options['face_type'] = self.options.get('face_type', default_face_type)
default_learn_mask = self.options.get('learn_mask', True)
if is_first_run or ask_override:
self.options['learn_mask'] = io.input_bool ( f"Learn mask? (y/n, ?:help skip:{yn_str[default_learn_mask]} ) : " , default_learn_mask, help_message="Learning mask can help model to recognize face directions. Learn without mask can reduce model size, in this case converter forced to use 'not predicted mask' that is not smooth as predicted. Model with style values can be learned without mask and produce same quality result.")
else:
self.options['learn_mask'] = self.options.get('learn_mask', default_learn_mask)
if (is_first_run or ask_override) and 'tensorflow' in self.device_config.backend:
def_optimizer_mode = self.options.get('optimizer_mode', 1)
self.options['optimizer_mode'] = io.input_int ("Optimizer mode? ( 1,2,3 ?:help skip:%d) : " % (def_optimizer_mode), def_optimizer_mode, help_message="1 - no changes. 2 - allows you to train x2 bigger network consuming RAM. 3 - allows you to train x3 bigger network consuming huge amount of RAM and slower, depends on CPU power.")
else:
self.options['optimizer_mode'] = self.options.get('optimizer_mode', 1)
if is_first_run:
self.options['archi'] = io.input_str ("AE architecture (df, liae ?:help skip:%s) : " % (default_archi) , default_archi, ['df','liae'], help_message="'df' keeps faces more natural. 'liae' can fix overly different face shapes.").lower() #-s version is slower, but has decreased change to collapse.
else:
self.options['archi'] = self.options.get('archi', default_archi)
default_ae_dims = 256 if 'liae' in self.options['archi'] else 512
default_e_ch_dims = 42
default_d_ch_dims = default_e_ch_dims // 2
def_ca_weights = False
if is_first_run:
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dims (32-1024 ?:help skip:%d) : " % (default_ae_dims) , default_ae_dims, help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
self.options['e_ch_dims'] = np.clip ( io.input_int("Encoder dims per channel (21-85 ?:help skip:%d) : " % (default_e_ch_dims) , default_e_ch_dims, help_message="More encoder dims help to recognize more facial features, but require more VRAM. You can fine-tune model size to fit your GPU." ), 21, 85 )
default_d_ch_dims = self.options['e_ch_dims'] // 2
self.options['d_ch_dims'] = np.clip ( io.input_int("Decoder dims per channel (10-85 ?:help skip:%d) : " % (default_d_ch_dims) , default_d_ch_dims, help_message="More decoder dims help to get better details, but require more VRAM. You can fine-tune model size to fit your GPU." ), 10, 85 )
self.options['ca_weights'] = io.input_bool (f"Use CA weights? (y/n, ?:help skip:{yn_str[def_ca_weights]} ) : ", def_ca_weights, help_message="Initialize network with 'Convolution Aware' weights. This may help to achieve a higher accuracy model, but consumes a time at first run.")
else:
self.options['ae_dims'] = self.options.get('ae_dims', default_ae_dims)
self.options['e_ch_dims'] = self.options.get('e_ch_dims', default_e_ch_dims)
self.options['d_ch_dims'] = self.options.get('d_ch_dims', default_d_ch_dims)
self.options['ca_weights'] = self.options.get('ca_weights', def_ca_weights)
default_face_style_power = 0.0
default_bg_style_power = 0.0
if is_first_run or ask_override:
def_pixel_loss = self.options.get('pixel_loss', False)
self.options['pixel_loss'] = io.input_bool (f"Use pixel loss? (y/n, ?:help skip:{yn_str[def_pixel_loss]} ) : ", def_pixel_loss, help_message="Pixel loss may help to enhance fine details and stabilize face color. Use it only if quality does not improve over time. Enabling this option too early increases the chance of model collapse.")
default_face_style_power = default_face_style_power if is_first_run else self.options.get('face_style_power', default_face_style_power)
self.options['face_style_power'] = np.clip ( io.input_number("Face style power ( 0.0 .. 100.0 ?:help skip:%.2f) : " % (default_face_style_power), default_face_style_power,
help_message="Learn to transfer face style details such as light and color conditions. Warning: Enable it only after 10k iters, when predicted face is clear enough to start learn style. Start from 0.1 value and check history changes. Enabling this option increases the chance of model collapse."), 0.0, 100.0 )
default_bg_style_power = default_bg_style_power if is_first_run else self.options.get('bg_style_power', default_bg_style_power)
self.options['bg_style_power'] = np.clip ( io.input_number("Background style power ( 0.0 .. 100.0 ?:help skip:%.2f) : " % (default_bg_style_power), default_bg_style_power,
help_message="Learn to transfer image around face. This can make face more like dst. Enabling this option increases the chance of model collapse."), 0.0, 100.0 )
default_ct_mode = self.options.get('ct_mode', 'none')
self.options['ct_mode'] = io.input_str (f"Color transfer mode apply to src faceset. ( none/rct/lct/mkl/idt/sot, ?:help skip:{default_ct_mode}) : ", default_ct_mode, ['none','rct','lct','mkl','idt','sot'], help_message="Change color distribution of src samples close to dst samples. Try all modes to find the best.")
if nnlib.device.backend != 'plaidML': # todo https://github.com/plaidml/plaidml/issues/301
default_clipgrad = False if is_first_run else self.options.get('clipgrad', False)
self.options['clipgrad'] = io.input_bool (f"Enable gradient clipping? (y/n, ?:help skip:{yn_str[default_clipgrad]}) : ", default_clipgrad, help_message="Gradient clipping reduces chance of model collapse, sacrificing speed of training.")
else:
self.options['clipgrad'] = False
else:
self.options['pixel_loss'] = self.options.get('pixel_loss', False)
self.options['face_style_power'] = self.options.get('face_style_power', default_face_style_power)
self.options['bg_style_power'] = self.options.get('bg_style_power', default_bg_style_power)
self.options['ct_mode'] = self.options.get('ct_mode', 'none')
self.options['clipgrad'] = self.options.get('clipgrad', False)
if is_first_run:
self.options['pretrain'] = io.input_bool ("Pretrain the model? (y/n, ?:help skip:n) : ", False, help_message="Pretrain the model with large amount of various faces. This technique may help to train the fake with overly different face shapes and light conditions of src/dst data. Face will be look more like a morphed. To reduce the morph effect, some model files will be initialized but not be updated after pretrain: LIAE: inter_AB.h5 DF: encoder.h5. The longer you pretrain the model the more morphed face will look. After that, save and run the training again.")
else:
self.options['pretrain'] = False
#override
def onInitialize(self):
exec(nnlib.import_all(), locals(), globals())
self.set_vram_batch_requirements({1.5:4})
resolution = self.options['resolution']
learn_mask = self.options['learn_mask']
ae_dims = self.options['ae_dims']
e_ch_dims = self.options['e_ch_dims']
d_ch_dims = self.options['d_ch_dims']
self.pretrain = self.options['pretrain'] = self.options.get('pretrain', False)
if not self.pretrain:
self.options.pop('pretrain')
bgr_shape = (resolution, resolution, 3)
mask_shape = (resolution, resolution, 1)
masked_training = True
class SAEDFModel(object):
def __init__(self, resolution, ae_dims, e_ch_dims, d_ch_dims, learn_mask):
super().__init__()
self.learn_mask = learn_mask
output_nc = 3
bgr_shape = (resolution, resolution, output_nc)
mask_shape = (resolution, resolution, 1)
lowest_dense_res = resolution // 16
e_dims = output_nc*e_ch_dims
def upscale (dim):
def func(x):
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, kernel_size=3, strides=1, padding='valid')(ZeroPadding2D(1)(x))))
return func
def enc_flow(e_dims, ae_dims, lowest_dense_res):
def func(x):
x = LeakyReLU(0.1)(Conv2D(e_dims, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
x = LeakyReLU(0.1)(Conv2D(e_dims*2, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
x = LeakyReLU(0.1)(Conv2D(e_dims*4, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
x = LeakyReLU(0.1)(Conv2D(e_dims*8, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
x = Dense(ae_dims)(Flatten()(x))
x = Dense(lowest_dense_res * lowest_dense_res * ae_dims)(x)
x = Reshape((lowest_dense_res, lowest_dense_res, ae_dims))(x)
x = upscale(ae_dims)(x)
return x
return func
def dec_flow(output_nc, d_ch_dims, add_residual_blocks=True):
dims = output_nc * d_ch_dims
def ResidualBlock(dim):
def func(inp):
x = Conv2D(dim, kernel_size=3, padding='valid')(ZeroPadding2D(1)(inp))
x = LeakyReLU(0.2)(x)
x = Conv2D(dim, kernel_size=3, padding='valid')(ZeroPadding2D(1)(x))
x = Add()([x, inp])
x = LeakyReLU(0.2)(x)
return x
return func
def func(x):
x = upscale(dims*8)(x)
if add_residual_blocks:
x = ResidualBlock(dims*8)(x)
x = ResidualBlock(dims*8)(x)
x = upscale(dims*4)(x)
if add_residual_blocks:
x = ResidualBlock(dims*4)(x)
x = ResidualBlock(dims*4)(x)
x = upscale(dims*2)(x)
if add_residual_blocks:
x = ResidualBlock(dims*2)(x)
x = ResidualBlock(dims*2)(x)
return Conv2D(output_nc, kernel_size=5, padding='valid', activation='sigmoid')(ZeroPadding2D(2)(x))
return func
self.encoder = modelify(enc_flow(e_dims, ae_dims, lowest_dense_res)) ( Input(bgr_shape) )
sh = K.int_shape( self.encoder.outputs[0] )[1:]
self.decoder_src = modelify(dec_flow(output_nc, d_ch_dims)) ( Input(sh) )
self.decoder_dst = modelify(dec_flow(output_nc, d_ch_dims)) ( Input(sh) )
if learn_mask:
self.decoder_srcm = modelify(dec_flow(1, d_ch_dims, add_residual_blocks=False)) ( Input(sh) )
self.decoder_dstm = modelify(dec_flow(1, d_ch_dims, add_residual_blocks=False)) ( Input(sh) )
self.src_dst_trainable_weights = self.encoder.trainable_weights + self.decoder_src.trainable_weights + self.decoder_dst.trainable_weights
if learn_mask:
self.src_dst_mask_trainable_weights = self.encoder.trainable_weights + self.decoder_srcm.trainable_weights + self.decoder_dstm.trainable_weights
self.warped_src, self.warped_dst = Input(bgr_shape), Input(bgr_shape)
src_code, dst_code = self.encoder(self.warped_src), self.encoder(self.warped_dst)
self.pred_src_src = self.decoder_src(src_code)
self.pred_dst_dst = self.decoder_dst(dst_code)
self.pred_src_dst = self.decoder_src(dst_code)
if learn_mask:
self.pred_src_srcm = self.decoder_srcm(src_code)
self.pred_dst_dstm = self.decoder_dstm(dst_code)
self.pred_src_dstm = self.decoder_srcm(dst_code)
def get_model_filename_list(self, exclude_for_pretrain=False):
ar = []
if not exclude_for_pretrain:
ar += [ [self.encoder, 'encoder.h5'] ]
ar += [ [self.decoder_src, 'decoder_src.h5'],
[self.decoder_dst, 'decoder_dst.h5'] ]
if self.learn_mask:
ar += [ [self.decoder_srcm, 'decoder_srcm.h5'],
[self.decoder_dstm, 'decoder_dstm.h5'] ]
return ar
class SAELIAEModel(object):
def __init__(self, resolution, ae_dims, e_ch_dims, d_ch_dims, learn_mask):
super().__init__()
self.learn_mask = learn_mask
output_nc = 3
bgr_shape = (resolution, resolution, output_nc)
mask_shape = (resolution, resolution, 1)
e_dims = output_nc*e_ch_dims
lowest_dense_res = resolution // 16
def upscale (dim):
def func(x):
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, kernel_size=3, strides=1, padding='valid')(ZeroPadding2D(1)(x))))
return func
def enc_flow(e_dims):
def func(x):
x = LeakyReLU(0.1)(Conv2D(e_dims, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
x = LeakyReLU(0.1)(Conv2D(e_dims*2, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
x = LeakyReLU(0.1)(Conv2D(e_dims*4, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
x = LeakyReLU(0.1)(Conv2D(e_dims*8, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
x = Flatten()(x)
return x
return func
def inter_flow(lowest_dense_res, ae_dims):
def func(x):
x = Dense(ae_dims)(x)
x = Dense(lowest_dense_res * lowest_dense_res * ae_dims*2)(x)
x = Reshape((lowest_dense_res, lowest_dense_res, ae_dims*2))(x)
x = upscale(ae_dims*2)(x)
return x
return func
def dec_flow(output_nc, d_ch_dims, add_residual_blocks=True):
d_dims = output_nc*d_ch_dims
def ResidualBlock(dim):
def func(inp):
x = Conv2D(dim, kernel_size=3, padding='valid')(ZeroPadding2D(1)(inp))
x = LeakyReLU(0.2)(x)
x = Conv2D(dim, kernel_size=3, padding='valid')(ZeroPadding2D(1)(inp))
x = Add()([x, inp])
x = LeakyReLU(0.2)(x)
return x
return func
def func(x):
x = upscale(d_dims*8)(x)
if add_residual_blocks:
x = ResidualBlock(d_dims*8)(x)
x = ResidualBlock(d_dims*8)(x)
x = upscale(d_dims*4)(x)
if add_residual_blocks:
x = ResidualBlock(d_dims*4)(x)
x = ResidualBlock(d_dims*4)(x)
x = upscale(d_dims*2)(x)
if add_residual_blocks:
x = ResidualBlock(d_dims*2)(x)
x = ResidualBlock(d_dims*2)(x)
return Conv2D(output_nc, kernel_size=5, padding='valid', activation='sigmoid')(ZeroPadding2D(2)(x))
return func
self.encoder = modelify(enc_flow(e_dims)) ( Input(bgr_shape) )
sh = K.int_shape( self.encoder.outputs[0] )[1:]
self.inter_B = modelify(inter_flow(lowest_dense_res, ae_dims)) ( Input(sh) )
self.inter_AB = modelify(inter_flow(lowest_dense_res, ae_dims)) ( Input(sh) )
sh = np.array(K.int_shape( self.inter_B.outputs[0] )[1:])*(1,1,2)
self.decoder = modelify(dec_flow(output_nc, d_ch_dims)) ( Input(sh) )
if learn_mask:
self.decoderm = modelify(dec_flow(1, d_ch_dims, add_residual_blocks=False)) ( Input(sh) )
self.src_dst_trainable_weights = self.encoder.trainable_weights + self.inter_B.trainable_weights + self.inter_AB.trainable_weights + self.decoder.trainable_weights
if learn_mask:
self.src_dst_mask_trainable_weights = self.encoder.trainable_weights + self.inter_B.trainable_weights + self.inter_AB.trainable_weights + self.decoderm.trainable_weights
self.warped_src, self.warped_dst = Input(bgr_shape), Input(bgr_shape)
warped_src_code = self.encoder (self.warped_src)
warped_src_inter_AB_code = self.inter_AB (warped_src_code)
warped_src_inter_code = Concatenate()([warped_src_inter_AB_code,warped_src_inter_AB_code])
warped_dst_code = self.encoder (self.warped_dst)
warped_dst_inter_B_code = self.inter_B (warped_dst_code)
warped_dst_inter_AB_code = self.inter_AB (warped_dst_code)
warped_dst_inter_code = Concatenate()([warped_dst_inter_B_code,warped_dst_inter_AB_code])
warped_src_dst_inter_code = Concatenate()([warped_dst_inter_AB_code,warped_dst_inter_AB_code])
self.pred_src_src = self.decoder(warped_src_inter_code)
self.pred_dst_dst = self.decoder(warped_dst_inter_code)
self.pred_src_dst = self.decoder(warped_src_dst_inter_code)
if learn_mask:
self.pred_src_srcm = self.decoderm(warped_src_inter_code)
self.pred_dst_dstm = self.decoderm(warped_dst_inter_code)
self.pred_src_dstm = self.decoderm(warped_src_dst_inter_code)
def get_model_filename_list(self, exclude_for_pretrain=False):
ar = [ [self.encoder, 'encoder.h5'],
[self.inter_B, 'inter_B.h5'] ]
if not exclude_for_pretrain:
ar += [ [self.inter_AB, 'inter_AB.h5'] ]
ar += [ [self.decoder, 'decoder.h5'] ]
if self.learn_mask:
ar += [ [self.decoderm, 'decoderm.h5'] ]
return ar
if 'df' in self.options['archi']:
self.model = SAEDFModel (resolution, ae_dims, e_ch_dims, d_ch_dims, learn_mask)
elif 'liae' in self.options['archi']:
self.model = SAELIAEModel (resolution, ae_dims, e_ch_dims, d_ch_dims, learn_mask)
loaded, not_loaded = [], self.model.get_model_filename_list()
if not self.is_first_run():
loaded, not_loaded = self.load_weights_safe(not_loaded)
CA_models = []
if self.options.get('ca_weights', False):
CA_models += [ model for model, _ in not_loaded ]
CA_conv_weights_list = []
for model in CA_models:
for layer in model.layers:
if type(layer) == keras.layers.Conv2D:
CA_conv_weights_list += [layer.weights[0]] #- is Conv2D kernel_weights
if len(CA_conv_weights_list) != 0:
CAInitializerMP ( CA_conv_weights_list )
warped_src = self.model.warped_src
target_src = Input ( (resolution, resolution, 3) )
target_srcm = Input ( (resolution, resolution, 1) )
warped_dst = self.model.warped_dst
target_dst = Input ( (resolution, resolution, 3) )
target_dstm = Input ( (resolution, resolution, 1) )
target_src_sigm = target_src
target_dst_sigm = target_dst
target_srcm_sigm = gaussian_blur( max(1, K.int_shape(target_srcm)[1] // 32) )(target_srcm)
target_dstm_sigm = gaussian_blur( max(1, K.int_shape(target_dstm)[1] // 32) )(target_dstm)
target_dstm_anti_sigm = 1.0 - target_dstm_sigm
target_src_masked = target_src_sigm*target_srcm_sigm
target_dst_masked = target_dst_sigm*target_dstm_sigm
target_dst_anti_masked = target_dst_sigm*target_dstm_anti_sigm
target_src_masked_opt = target_src_masked if masked_training else target_src_sigm
target_dst_masked_opt = target_dst_masked if masked_training else target_dst_sigm
pred_src_src = self.model.pred_src_src
pred_dst_dst = self.model.pred_dst_dst
pred_src_dst = self.model.pred_src_dst
if learn_mask:
pred_src_srcm = self.model.pred_src_srcm
pred_dst_dstm = self.model.pred_dst_dstm
pred_src_dstm = self.model.pred_src_dstm
pred_src_src_sigm = self.model.pred_src_src
pred_dst_dst_sigm = self.model.pred_dst_dst
pred_src_dst_sigm = self.model.pred_src_dst
pred_src_src_masked = pred_src_src_sigm*target_srcm_sigm
pred_dst_dst_masked = pred_dst_dst_sigm*target_dstm_sigm
pred_src_src_masked_opt = pred_src_src_masked if masked_training else pred_src_src_sigm
pred_dst_dst_masked_opt = pred_dst_dst_masked if masked_training else pred_dst_dst_sigm
psd_target_dst_masked = pred_src_dst_sigm*target_dstm_sigm
psd_target_dst_anti_masked = pred_src_dst_sigm*target_dstm_anti_sigm
if self.is_training_mode:
self.src_dst_opt = Adam(lr=5e-5, beta_1=0.5, beta_2=0.999, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1)
self.src_dst_mask_opt = Adam(lr=5e-5, beta_1=0.5, beta_2=0.999, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1)
if not self.options['pixel_loss']:
src_loss = K.mean ( 10*dssim(kernel_size=int(resolution/11.6),max_value=1.0)( target_src_masked_opt, pred_src_src_masked_opt) )
else:
src_loss = K.mean ( 50*K.square( target_src_masked_opt - pred_src_src_masked_opt ) )
face_style_power = self.options['face_style_power'] / 100.0
if face_style_power != 0:
src_loss += style_loss(gaussian_blur_radius=resolution//16, loss_weight=face_style_power, wnd_size=0)( psd_target_dst_masked, target_dst_masked )
bg_style_power = self.options['bg_style_power'] / 100.0
if bg_style_power != 0:
if not self.options['pixel_loss']:
src_loss += K.mean( (10*bg_style_power)*dssim(kernel_size=int(resolution/11.6),max_value=1.0)( psd_target_dst_anti_masked, target_dst_anti_masked ))
else:
src_loss += K.mean( (50*bg_style_power)*K.square( psd_target_dst_anti_masked - target_dst_anti_masked ))
if not self.options['pixel_loss']:
dst_loss = K.mean( 10*dssim(kernel_size=int(resolution/11.6),max_value=1.0)(target_dst_masked_opt, pred_dst_dst_masked_opt) )
else:
dst_loss = K.mean( 50*K.square( target_dst_masked_opt - pred_dst_dst_masked_opt ) )
self.src_dst_train = K.function ([warped_src, warped_dst, target_src, target_srcm, target_dst, target_dstm],[src_loss,dst_loss], self.src_dst_opt.get_updates(src_loss+dst_loss, self.model.src_dst_trainable_weights) )
if self.options['learn_mask']:
src_mask_loss = K.mean(K.square(target_srcm-pred_src_srcm))
dst_mask_loss = K.mean(K.square(target_dstm-pred_dst_dstm))
self.src_dst_mask_train = K.function ([warped_src, warped_dst, target_srcm, target_dstm],[src_mask_loss, dst_mask_loss], self.src_dst_mask_opt.get_updates(src_mask_loss+dst_mask_loss, self.model.src_dst_mask_trainable_weights ) )
if self.options['learn_mask']:
self.AE_view = K.function ([warped_src, warped_dst], [pred_src_src, pred_dst_dst, pred_dst_dstm, pred_src_dst, pred_src_dstm])
else:
self.AE_view = K.function ([warped_src, warped_dst], [pred_src_src, pred_dst_dst, pred_src_dst ])
else:
if self.options['learn_mask']:
self.AE_convert = K.function ([warped_dst],[ pred_src_dst, pred_dst_dstm, pred_src_dstm ])
else:
self.AE_convert = K.function ([warped_dst],[ pred_src_dst ])
if self.is_training_mode:
t = SampleProcessor.Types
face_type = t.FACE_TYPE_FULL if self.options['face_type'] == 'f' else t.FACE_TYPE_HALF
t_mode_bgr = t.MODE_BGR if not self.pretrain else t.MODE_BGR_SHUFFLE
training_data_src_path = self.training_data_src_path
training_data_dst_path = self.training_data_dst_path
if self.pretrain and self.pretraining_data_path is not None:
training_data_src_path = self.pretraining_data_path
training_data_dst_path = self.pretraining_data_path
self.set_training_data_generators ([
SampleGeneratorFace(training_data_src_path, random_ct_samples_path=training_data_dst_path if self.options['ct_mode'] != 'none' else None,
debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, scale_range=np.array([-0.05, 0.05]) ),
output_sample_types = [ {'types' : (t.IMG_WARPED_TRANSFORMED, face_type, t_mode_bgr), 'resolution':resolution, 'ct_mode': self.options['ct_mode'] },
{'types' : (t.IMG_TRANSFORMED, face_type, t_mode_bgr), 'resolution': resolution, 'ct_mode': self.options['ct_mode'] },
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_M), 'resolution': resolution } ]
),
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, ),
output_sample_types = [ {'types' : (t.IMG_WARPED_TRANSFORMED, face_type, t_mode_bgr), 'resolution':resolution},
{'types' : (t.IMG_TRANSFORMED, face_type, t_mode_bgr), 'resolution': resolution},
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_M), 'resolution': resolution} ])
])
#override
def get_model_filename_list(self):
ar = self.model.get_model_filename_list ( exclude_for_pretrain=(self.pretrain and self.iter != 0) )
return ar
#override
def onSave(self):
self.save_weights_safe( self.get_model_filename_list() )
#override
def onTrainOneIter(self, generators_samples, generators_list):
warped_src, target_src, target_srcm = generators_samples[0]
warped_dst, target_dst, target_dstm = generators_samples[1]
feed = [warped_src, warped_dst, target_src, target_srcm, target_dst, target_dstm]
src_loss, dst_loss, = self.src_dst_train (feed)
if self.options['learn_mask']:
feed = [ warped_src, warped_dst, target_srcm, target_dstm ]
src_mask_loss, dst_mask_loss, = self.src_dst_mask_train (feed)
return ( ('src_loss', src_loss), ('dst_loss', dst_loss), )
#override
def onGetPreview(self, sample):
test_S = sample[0][1][0:4] #first 4 samples
test_S_m = sample[0][2][0:4] #first 4 samples
test_D = sample[1][1][0:4]
test_D_m = sample[1][2][0:4]
if self.options['learn_mask']:
S, D, SS, DD, DDM, SD, SDM = [ np.clip(x, 0.0, 1.0) for x in ([test_S,test_D] + self.AE_view ([test_S, test_D]) ) ]
DDM, SDM, = [ np.repeat (x, (3,), -1) for x in [DDM, SDM] ]
else:
S, D, SS, DD, SD, = [ np.clip(x, 0.0, 1.0) for x in ([test_S,test_D] + self.AE_view ([test_S, test_D]) ) ]
result = []
st = []
for i in range(len(test_S)):
ar = S[i], SS[i], D[i], DD[i], SD[i]
st.append ( np.concatenate ( ar, axis=1) )
result += [ ('SAE', np.concatenate (st, axis=0 )), ]
if self.options['learn_mask']:
st_m = []
for i in range(len(test_S)):
ar = S[i]*test_S_m[i], SS[i], D[i]*test_D_m[i], DD[i]*DDM[i], SD[i]*(DDM[i]*SDM[i])
st_m.append ( np.concatenate ( ar, axis=1) )
result += [ ('SAE masked', np.concatenate (st_m, axis=0 )), ]
return result
def predictor_func (self, face=None, dummy_predict=False):
if dummy_predict:
self.AE_convert ([ np.zeros ( (1, self.options['resolution'], self.options['resolution'], 3), dtype=np.float32 ) ])
else:
if self.options['learn_mask']:
bgr, mask_dst_dstm, mask_src_dstm = self.AE_convert ([face[np.newaxis,...]])
mask = mask_dst_dstm[0] * mask_src_dstm[0]
return bgr[0], mask[...,0]
else:
bgr, = self.AE_convert ([face[np.newaxis,...]])
return bgr[0]
#override
def get_ConverterConfig(self):
face_type = FaceType.FULL if self.options['face_type'] == 'f' else FaceType.HALF
import converters
return self.predictor_func, (self.options['resolution'], self.options['resolution'], 3), converters.ConverterConfigMasked(face_type=face_type,
default_mode = 'overlay' if self.options['ct_mode'] != 'none' or self.options['face_style_power'] or self.options['bg_style_power'] else 'seamless',
clip_hborder_mask_per=0.0625 if (self.options['face_type'] == 'f') else 0,
)
Model = SAEModel

View file

@ -1 +0,0 @@
from .Model import Model

File diff suppressed because it is too large Load diff

View file

@ -1,5 +1,5 @@
from .ModelBase import ModelBase
def import_model(name):
module = __import__('Model_'+name, globals(), locals(), [], 1)
def import_model(model_class_name):
module = __import__('Model_'+model_class_name, globals(), locals(), [], 1)
return getattr(module, 'Model')

Binary file not shown.