AMP, SAEHD: added option use_fp16: Increases training/inference speed, reduces model size. Model may crash. Enable it after 1-5k iters.

AMP: removed lr_dropout, now it is enabled by default;
This commit is contained in:
iperov 2021-07-14 23:03:54 +04:00
parent ee1bc83a14
commit 35877dbfd7
4 changed files with 102 additions and 98 deletions

View file

@ -8,12 +8,15 @@ class DeepFakeArchi(nn.ArchiBase):
mod None - default
'quick'
"""
def __init__(self, resolution, mod=None, opts=None):
def __init__(self, resolution, use_fp16=False, mod=None, opts=None):
super().__init__()
if opts is None:
opts = ''
conv_dtype = tf.float16 if use_fp16 else tf.float32
if mod is None:
class Downscale(nn.ModelBase):
def __init__(self, in_ch, out_ch, kernel_size=5, *kwargs ):
@ -23,7 +26,7 @@ class DeepFakeArchi(nn.ArchiBase):
super().__init__(*kwargs)
def on_build(self, *args, **kwargs ):
self.conv1 = nn.Conv2D( self.in_ch, self.out_ch, kernel_size=self.kernel_size, strides=2, padding='SAME')
self.conv1 = nn.Conv2D( self.in_ch, self.out_ch, kernel_size=self.kernel_size, strides=2, padding='SAME', dtype=conv_dtype)
def forward(self, x):
x = self.conv1(x)
@ -40,7 +43,7 @@ class DeepFakeArchi(nn.ArchiBase):
last_ch = in_ch
for i in range(n_downscales):
cur_ch = ch*( min(2**i, 8) )
self.downs.append ( Downscale(last_ch, cur_ch, kernel_size=kernel_size) )
self.downs.append ( Downscale(last_ch, cur_ch, kernel_size=kernel_size))
last_ch = self.downs[-1].get_out_ch()
def forward(self, inp):
@ -50,8 +53,8 @@ class DeepFakeArchi(nn.ArchiBase):
return x
class Upscale(nn.ModelBase):
def on_build(self, in_ch, out_ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME')
def on_build(self, in_ch, out_ch, kernel_size=3):
self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
def forward(self, x):
x = self.conv1(x)
@ -60,9 +63,9 @@ class DeepFakeArchi(nn.ArchiBase):
return x
class ResidualBlock(nn.ModelBase):
def on_build(self, ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
def on_build(self, ch, kernel_size=3):
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
def forward(self, inp):
x = self.conv1(inp)
@ -80,8 +83,13 @@ class DeepFakeArchi(nn.ArchiBase):
def on_build(self):
self.down1 = DownscaleBlock(self.in_ch, self.e_ch, n_downscales=4, kernel_size=5)
def forward(self, inp):
return nn.flatten(self.down1(inp))
def forward(self, x):
if use_fp16:
x = tf.cast(x, tf.float16)
x = nn.flatten(self.down1(x))
if use_fp16:
x = tf.cast(x, tf.float32)
return x
def get_out_res(self, res):
return res // (2**4)
@ -98,9 +106,10 @@ class DeepFakeArchi(nn.ArchiBase):
def on_build(self):
in_ch, ae_ch, ae_out_ch = self.in_ch, self.ae_ch, self.ae_out_ch
if 'u' in opts:
self.dense_norm = nn.DenseNorm()
self.dense1 = nn.Dense( in_ch, ae_ch )
self.dense2 = nn.Dense( ae_ch, lowest_dense_res * lowest_dense_res * ae_out_ch )
self.upscale1 = Upscale(ae_out_ch, ae_out_ch)
@ -112,6 +121,9 @@ class DeepFakeArchi(nn.ArchiBase):
x = self.dense1(x)
x = self.dense2(x)
x = nn.reshape_4D (x, lowest_dense_res, lowest_dense_res, self.ae_out_ch)
if use_fp16:
x = tf.cast(x, tf.float16)
x = self.upscale1(x)
return x
@ -122,7 +134,7 @@ class DeepFakeArchi(nn.ArchiBase):
return self.ae_out_ch
class Decoder(nn.ModelBase):
def on_build(self, in_ch, d_ch, d_mask_ch ):
def on_build(self, in_ch, d_ch, d_mask_ch):
self.upscale0 = Upscale(in_ch, d_ch*8, kernel_size=3)
self.upscale1 = Upscale(d_ch*8, d_ch*4, kernel_size=3)
self.upscale2 = Upscale(d_ch*4, d_ch*2, kernel_size=3)
@ -131,25 +143,23 @@ class DeepFakeArchi(nn.ArchiBase):
self.res1 = ResidualBlock(d_ch*4, kernel_size=3)
self.res2 = ResidualBlock(d_ch*2, kernel_size=3)
self.out_conv = nn.Conv2D( d_ch*2, 3, kernel_size=1, padding='SAME')
self.out_conv = nn.Conv2D( d_ch*2, 3, kernel_size=1, padding='SAME', dtype=conv_dtype)
self.upscalem0 = Upscale(in_ch, d_mask_ch*8, kernel_size=3)
self.upscalem1 = Upscale(d_mask_ch*8, d_mask_ch*4, kernel_size=3)
self.upscalem2 = Upscale(d_mask_ch*4, d_mask_ch*2, kernel_size=3)
self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME')
self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
if 'd' in opts:
self.out_conv1 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME')
self.out_conv2 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME')
self.out_conv3 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME')
self.out_conv1 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.out_conv2 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.out_conv3 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.upscalem3 = Upscale(d_mask_ch*2, d_mask_ch*1, kernel_size=3)
self.out_convm = nn.Conv2D( d_mask_ch*1, 1, kernel_size=1, padding='SAME')
self.out_convm = nn.Conv2D( d_mask_ch*1, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
else:
self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME')
def forward(self, inp):
z = inp
self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
def forward(self, z):
x = self.upscale0(z)
x = self.res0(x)
x = self.upscale1(x)
@ -157,40 +167,11 @@ class DeepFakeArchi(nn.ArchiBase):
x = self.upscale2(x)
x = self.res2(x)
if 'd' in opts:
x0 = tf.nn.sigmoid(self.out_conv(x))
x0 = nn.upsample2d(x0)
x1 = tf.nn.sigmoid(self.out_conv1(x))
x1 = nn.upsample2d(x1)
x2 = tf.nn.sigmoid(self.out_conv2(x))
x2 = nn.upsample2d(x2)
x3 = tf.nn.sigmoid(self.out_conv3(x))
x3 = nn.upsample2d(x3)
if nn.data_format == "NHWC":
tile_cfg = ( 1, resolution // 2, resolution //2, 1)
else:
tile_cfg = ( 1, 1, resolution // 2, resolution //2 )
z0 = tf.concat ( ( tf.concat ( ( tf.ones ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ),
tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] )
z0 = tf.tile ( z0, tile_cfg )
z1 = tf.concat ( ( tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.ones ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ),
tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] )
z1 = tf.tile ( z1, tile_cfg )
z2 = tf.concat ( ( tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ),
tf.concat ( ( tf.ones ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] )
z2 = tf.tile ( z2, tile_cfg )
z3 = tf.concat ( ( tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ),
tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.ones ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] )
z3 = tf.tile ( z3, tile_cfg )
x = x0*z0 + x1*z1 + x2*z2 + x3*z3
x = tf.nn.sigmoid( nn.depth_to_space(tf.concat( (self.out_conv(x),
self.out_conv1(x),
self.out_conv2(x),
self.out_conv3(x)), nn.conv2d_ch_axis), 2) )
else:
x = tf.nn.sigmoid(self.out_conv(x))
@ -201,7 +182,11 @@ class DeepFakeArchi(nn.ArchiBase):
if 'd' in opts:
m = self.upscalem3(m)
m = tf.nn.sigmoid(self.out_convm(m))
if use_fp16:
x = tf.cast(x, tf.float32)
m = tf.cast(m, tf.float32)
return x, m
self.Encoder = Encoder

View file

@ -130,12 +130,14 @@ class UNetPatchDiscriminator(nn.ModelBase):
q=x[np.abs(np.array(x)-target_patch_size).argmin()]
return s[q][2]
def on_build(self, patch_size, in_ch, base_ch = 16):
def on_build(self, patch_size, in_ch, base_ch = 16, use_fp16 = False):
self.use_fp16 = use_fp16
conv_dtype = tf.float16 if use_fp16 else tf.float32
class ResidualBlock(nn.ModelBase):
def on_build(self, ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
def forward(self, inp):
x = self.conv1(inp)
@ -151,20 +153,23 @@ class UNetPatchDiscriminator(nn.ModelBase):
level_chs = { i-1:v for i,v in enumerate([ min( base_ch * (2**i), 512 ) for i in range(len(layers)+1)]) }
self.in_conv = nn.Conv2D( in_ch, level_chs[-1], kernel_size=1, padding='VALID')
self.in_conv = nn.Conv2D( in_ch, level_chs[-1], kernel_size=1, padding='VALID', dtype=conv_dtype)
for i, (kernel_size, strides) in enumerate(layers):
self.convs.append ( nn.Conv2D( level_chs[i-1], level_chs[i], kernel_size=kernel_size, strides=strides, padding='SAME') )
self.convs.append ( nn.Conv2D( level_chs[i-1], level_chs[i], kernel_size=kernel_size, strides=strides, padding='SAME', dtype=conv_dtype) )
self.upconvs.insert (0, nn.Conv2DTranspose( level_chs[i]*(2 if i != len(layers)-1 else 1), level_chs[i-1], kernel_size=kernel_size, strides=strides, padding='SAME') )
self.upconvs.insert (0, nn.Conv2DTranspose( level_chs[i]*(2 if i != len(layers)-1 else 1), level_chs[i-1], kernel_size=kernel_size, strides=strides, padding='SAME', dtype=conv_dtype) )
self.out_conv = nn.Conv2D( level_chs[-1]*2, 1, kernel_size=1, padding='VALID')
self.out_conv = nn.Conv2D( level_chs[-1]*2, 1, kernel_size=1, padding='VALID', dtype=conv_dtype)
self.center_out = nn.Conv2D( level_chs[len(layers)-1], 1, kernel_size=1, padding='VALID')
self.center_conv = nn.Conv2D( level_chs[len(layers)-1], level_chs[len(layers)-1], kernel_size=1, padding='VALID')
self.center_out = nn.Conv2D( level_chs[len(layers)-1], 1, kernel_size=1, padding='VALID', dtype=conv_dtype)
self.center_conv = nn.Conv2D( level_chs[len(layers)-1], level_chs[len(layers)-1], kernel_size=1, padding='VALID', dtype=conv_dtype)
def forward(self, x):
if self.use_fp16:
x = tf.cast(x, tf.float16)
x = tf.nn.leaky_relu( self.in_conv(x), 0.2 )
encs = []
@ -178,6 +183,12 @@ class UNetPatchDiscriminator(nn.ModelBase):
x = tf.nn.leaky_relu( upconv(x), 0.2 )
x = tf.concat( [enc, x], axis=nn.conv2d_ch_axis)
return center_out, self.out_conv(x)
x = self.out_conv(x)
if self.use_fp16:
center_out = tf.cast(center_out, tf.float32)
x = tf.cast(x, tf.float32)
return center_out, x
nn.UNetPatchDiscriminator = UNetPatchDiscriminator