Merge branch 'iperov-master' into build/update-from-parent

# Conflicts:
#	converters/ConverterMasked.py
#	samplelib/SampleProcessor.py
This commit is contained in:
Jeremy Hummel 2019-08-14 14:17:10 -07:00
commit 32fee27cf0
17 changed files with 389 additions and 248 deletions

View file

@ -20,8 +20,9 @@ class ConverterAvatar(Converter):
self.predictor_input_size = predictor_input_size
#dummy predict and sleep, tensorflow caching kernels. If remove it, conversion speed will be x2 slower
predictor_func ( np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ),
np.zeros ( (predictor_input_size,predictor_input_size,1), dtype=np.float32 ) )
predictor_func ( np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ),
np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ),
np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ) )
time.sleep(2)
predictor_func_host, predictor_func = SubprocessFunctionCaller.make_pair(predictor_func)
@ -33,38 +34,28 @@ class ConverterAvatar(Converter):
self.predictor_func_host.obj.process_messages()
#override
def cli_convert_face (self, img_bgr, img_face_landmarks, debug, avaperator_face_bgr=None, **kwargs):
def cli_convert_face (self, f0, f0_lmrk, f1, f1_lmrk, f2, f2_lmrk, debug, **kwargs):
if debug:
debugs = [img_bgr.copy()]
img_size = img_bgr.shape[1], img_bgr.shape[0]
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
img_face_mask_aaa = np.repeat(img_face_mask_a, 3, -1)
debugs = []
inp_size = self.predictor_input_size
f0_mat = LandmarksProcessor.get_transform_mat (f0_lmrk, inp_size, face_type=FaceType.FULL_NO_ALIGN)
f1_mat = LandmarksProcessor.get_transform_mat (f1_lmrk, inp_size, face_type=FaceType.FULL_NO_ALIGN)
f2_mat = LandmarksProcessor.get_transform_mat (f2_lmrk, inp_size, face_type=FaceType.FULL_NO_ALIGN)
output_size = self.predictor_input_size
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=FaceType.FULL)
inp_f0 = cv2.warpAffine( f0, f0_mat, (inp_size, inp_size), flags=cv2.INTER_CUBIC )
inp_f1 = cv2.warpAffine( f1, f1_mat, (inp_size, inp_size), flags=cv2.INTER_CUBIC )
inp_f2 = cv2.warpAffine( f2, f2_mat, (inp_size, inp_size), flags=cv2.INTER_CUBIC )
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
prd_f = self.predictor_func ( inp_f0, inp_f1, inp_f2 )
predictor_input_dst_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (self.predictor_input_size,self.predictor_input_size), cv2.INTER_CUBIC )
prd_inp_dst_face_mask_a = predictor_input_dst_face_mask_a_0[...,np.newaxis]
out_img = np.clip(prd_f, 0.0, 1.0)
prd_inp_avaperator_face_bgr = cv2.resize (avaperator_face_bgr, (self.predictor_input_size,self.predictor_input_size), cv2.INTER_CUBIC )
prd_face_bgr = self.predictor_func ( prd_inp_avaperator_face_bgr, prd_inp_dst_face_mask_a )
out_img = img_bgr.copy()
out_img = cv2.warpAffine( prd_face_bgr, face_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
out_img = np.clip(out_img, 0.0, 1.0)
out_img = np.concatenate ( [cv2.resize ( inp_f1, (prd_f.shape[1], prd_f.shape[0]) ),
out_img], axis=1 )
if debug:
debugs += [out_img.copy()]
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (out_img*img_face_mask_aaa) , 0, 1.0 )
if debug:
debugs += [out_img.copy()]
return debugs if debug else out_img

View file

@ -328,14 +328,13 @@ class ConverterMasked(Converter):
img_mask_blurry_aaa = img_face_mask_aaa
if self.clip_hborder_mask_per > 0: # clip hborder before blur
prd_hborder_rect_mask_a = np.ones(prd_face_mask_a.shape, dtype=np.float32)
prd_border_size = int(prd_hborder_rect_mask_a.shape[1] * self.clip_hborder_mask_per)
prd_hborder_rect_mask_a[:, 0:prd_border_size, :] = 0
prd_hborder_rect_mask_a[:, -prd_border_size:, :] = 0
prd_hborder_rect_mask_a[-prd_border_size:, :, :] = 0
prd_hborder_rect_mask_a = np.expand_dims(
cv2.blur(prd_hborder_rect_mask_a, (prd_border_size, prd_border_size)), -1)
if self.clip_hborder_mask_per > 0: #clip hborder before blur
prd_hborder_rect_mask_a = np.ones ( prd_face_mask_a.shape, dtype=np.float32)
prd_border_size = int ( prd_hborder_rect_mask_a.shape[1] * self.clip_hborder_mask_per )
prd_hborder_rect_mask_a[:,0:prd_border_size,:] = 0
prd_hborder_rect_mask_a[:,-prd_border_size:,:] = 0
prd_hborder_rect_mask_a[-prd_border_size:,:,:] = 0
prd_hborder_rect_mask_a = np.expand_dims(cv2.blur(prd_hborder_rect_mask_a, (prd_border_size, prd_border_size) ),-1)
img_prd_hborder_rect_mask_a = cv2.warpAffine(prd_hborder_rect_mask_a, face_output_mat, img_size,
np.zeros(img_bgr.shape, dtype=np.float32),

View file

@ -4,10 +4,10 @@ class FaceType(IntEnum):
HALF = 0,
FULL = 1,
HEAD = 2,
AVATAR = 3, #centered nose only
MARK_ONLY = 4, #no align at all, just embedded faceinfo
QTY = 5
FULL_NO_ALIGN = 5,
MARK_ONLY = 10, #no align at all, just embedded faceinfo
@staticmethod
def fromString (s):
r = from_string_dict.get (s.lower())
@ -17,17 +17,17 @@ class FaceType(IntEnum):
@staticmethod
def toString (face_type):
return to_string_list[face_type]
return to_string_dict[face_type]
from_string_dict = {'half_face': FaceType.HALF,
'full_face': FaceType.FULL,
'head' : FaceType.HEAD,
'avatar' : FaceType.AVATAR,
'mark_only' : FaceType.MARK_ONLY,
'full_face_no_align' : FaceType.FULL_NO_ALIGN,
}
to_string_list = [ 'half_face',
'full_face',
'head',
'avatar',
'mark_only'
]
to_string_dict = { FaceType.HALF : 'half_face',
FaceType.FULL : 'full_face',
FaceType.HEAD : 'head',
FaceType.MARK_ONLY :'mark_only',
FaceType.FULL_NO_ALIGN : 'full_face_no_align'
}

View file

@ -109,10 +109,19 @@ landmarks_68_3D = np.array( [
[0.205322 , 31.408738 , -21.903670 ],
[-7.198266 , 30.844876 , -20.328022 ] ], dtype=np.float32)
def transform_points(points, mat, invert=False):
if invert:
mat = cv2.invertAffineTransform (mat)
points = np.expand_dims(points, axis=1)
points = cv2.transform(points, mat, points.shape)
points = np.squeeze(points)
return points
def get_transform_mat (image_landmarks, output_size, face_type, scale=1.0):
if not isinstance(image_landmarks, np.ndarray):
image_landmarks = np.array (image_landmarks)
"""
if face_type == FaceType.AVATAR:
centroid = np.mean (image_landmarks, axis=0)
@ -128,76 +137,79 @@ def get_transform_mat (image_landmarks, output_size, face_type, scale=1.0):
mat = mat * scale * (output_size / 3)
mat[:,2] += output_size / 2
else:
if face_type == FaceType.HALF:
padding = 0
elif face_type == FaceType.FULL:
padding = (output_size / 64) * 12
elif face_type == FaceType.HEAD:
padding = (output_size / 64) * 24
else:
raise ValueError ('wrong face_type: ', face_type)
"""
remove_align = False
if face_type == FaceType.FULL_NO_ALIGN:
face_type = FaceType.FULL
remove_align = True
if face_type == FaceType.HALF:
padding = 0
elif face_type == FaceType.FULL:
padding = (output_size / 64) * 12
elif face_type == FaceType.HEAD:
padding = (output_size / 64) * 24
else:
raise ValueError ('wrong face_type: ', face_type)
mat = umeyama(image_landmarks[17:], landmarks_2D, True)[0:2]
mat = mat * (output_size - 2 * padding)
mat[:,2] += padding
mat *= (1 / scale)
mat[:,2] += -output_size*( ( (1 / scale) - 1.0 ) / 2 )
mat = umeyama(image_landmarks[17:], landmarks_2D, True)[0:2]
mat = mat * (output_size - 2 * padding)
mat[:,2] += padding
mat *= (1 / scale)
mat[:,2] += -output_size*( ( (1 / scale) - 1.0 ) / 2 )
if remove_align:
bbox = transform_points ( [ (0,0), (0,output_size-1), (output_size-1, output_size-1), (output_size-1,0) ], mat, True)
area = mathlib.polygon_area(bbox[:,0], bbox[:,1] )
side = math.sqrt(area) / 2
center = transform_points ( [(output_size/2,output_size/2)], mat, True)
pts1 = np.float32([ center+[-side,-side], center+[side,-side], center+[-side,side] ])
pts2 = np.float32([[0,0],[output_size-1,0],[0,output_size-1]])
mat = cv2.getAffineTransform(pts1,pts2)
return mat
def transform_points(points, mat, invert=False):
if invert:
mat = cv2.invertAffineTransform (mat)
points = np.expand_dims(points, axis=1)
points = cv2.transform(points, mat, points.shape)
points = np.squeeze(points)
return points
def get_image_hull_mask (image_shape, image_landmarks, ie_polys=None):
if len(image_landmarks) != 68:
raise Exception('get_image_hull_mask works only with 68 landmarks')
int_lmrks = np.array(image_landmarks, dtype=np.int)
int_lmrks = np.array(image_landmarks.copy(), dtype=np.int)
hull_mask = np.zeros(image_shape[0:2]+(1,),dtype=np.float32)
cv2.fillConvexPoly( hull_mask, cv2.convexHull(
np.concatenate ( (int_lmrks[0:9],
int_lmrks[17:18]))) , (1,) )
# #nose
ml_pnt = (int_lmrks[36] + int_lmrks[0]) // 2
mr_pnt = (int_lmrks[16] + int_lmrks[45]) // 2
cv2.fillConvexPoly( hull_mask, cv2.convexHull(
np.concatenate ( (int_lmrks[8:17],
int_lmrks[26:27]))) , (1,) )
# mid points between the mid points and eye
ql_pnt = (int_lmrks[36] + ml_pnt) // 2
qr_pnt = (int_lmrks[45] + mr_pnt) // 2
cv2.fillConvexPoly( hull_mask, cv2.convexHull(
np.concatenate ( (int_lmrks[17:20],
int_lmrks[8:9]))) , (1,) )
# Top of the eye arrays
bot_l = np.array((ql_pnt, int_lmrks[36], int_lmrks[37], int_lmrks[38], int_lmrks[39]))
bot_r = np.array((int_lmrks[42], int_lmrks[43], int_lmrks[44], int_lmrks[45], qr_pnt))
cv2.fillConvexPoly( hull_mask, cv2.convexHull(
np.concatenate ( (int_lmrks[24:27],
int_lmrks[8:9]))) , (1,) )
# Eyebrow arrays
top_l = int_lmrks[17:22]
top_r = int_lmrks[22:27]
cv2.fillConvexPoly( hull_mask, cv2.convexHull(
np.concatenate ( (int_lmrks[19:25],
int_lmrks[8:9],
))) , (1,) )
# Adjust eyebrow arrays
int_lmrks[17:22] = top_l + ((top_l - bot_l) // 2)
int_lmrks[22:27] = top_r + ((top_r - bot_r) // 2)
cv2.fillConvexPoly( hull_mask, cv2.convexHull(
np.concatenate ( (int_lmrks[17:22],
int_lmrks[27:28],
int_lmrks[31:36],
int_lmrks[8:9]
))) , (1,) )
r_jaw = (int_lmrks[0:9], int_lmrks[17:18])
l_jaw = (int_lmrks[8:17], int_lmrks[26:27])
r_cheek = (int_lmrks[17:20], int_lmrks[8:9])
l_cheek = (int_lmrks[24:27], int_lmrks[8:9])
nose_ridge = (int_lmrks[19:25], int_lmrks[8:9],)
r_eye = (int_lmrks[17:22], int_lmrks[27:28], int_lmrks[31:36], int_lmrks[8:9])
l_eye = (int_lmrks[22:27], int_lmrks[27:28], int_lmrks[31:36], int_lmrks[8:9])
nose = (int_lmrks[27:31], int_lmrks[31:36])
parts = [r_jaw, l_jaw, r_cheek, l_cheek, nose_ridge, r_eye, l_eye, nose]
cv2.fillConvexPoly( hull_mask, cv2.convexHull(
np.concatenate ( (int_lmrks[22:27],
int_lmrks[27:28],
int_lmrks[31:36],
int_lmrks[8:9]
))) , (1,) )
#nose
cv2.fillConvexPoly( hull_mask, cv2.convexHull(int_lmrks[27:36]), (1,) )
for item in parts:
merged = np.concatenate(item)
cv2.fillConvexPoly(hull_mask, cv2.convexHull(merged), 1)
if ie_polys is not None:
ie_polys.overlay_mask(hull_mask)
@ -309,7 +321,7 @@ def draw_landmarks (image, image_landmarks, color=(0,255,0), transparent_mask=Fa
mask = get_image_hull_mask (image.shape, image_landmarks, ie_polys)
image[...] = ( image * (1-mask) + image * mask / 2 )[...]
def draw_rect_landmarks (image, rect, image_landmarks, face_size, face_type, transparent_mask=False, ie_polys=None, landmarks_color=(0,255,0) ):
def draw_rect_landmarks (image, rect, image_landmarks, face_size, face_type, transparent_mask=False, ie_polys=None, landmarks_color=(0,255,0)):
draw_landmarks(image, image_landmarks, color=landmarks_color, transparent_mask=transparent_mask, ie_polys=ie_polys)
imagelib.draw_rect (image, rect, (255,0,0), 2 )

View file

@ -40,7 +40,7 @@ if __name__ == "__main__":
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory. A directory containing the files you wish to process.")
p.add_argument('--output-dir', required=True, action=fixPathAction, dest="output_dir", help="Output directory. This is where the extracted files will be stored.")
p.add_argument('--debug-dir', action=fixPathAction, dest="debug_dir", help="Writes debug images to this directory.")
p.add_argument('--face-type', dest="face_type", choices=['half_face', 'full_face', 'head', 'avatar', 'mark_only'], default='full_face', help="Default 'full_face'. Don't change this option, currently all models uses 'full_face'")
p.add_argument('--face-type', dest="face_type", choices=['half_face', 'full_face', 'head', 'full_face_no_align', 'mark_only'], default='full_face', help="Default 'full_face'. Don't change this option, currently all models uses 'full_face'")
p.add_argument('--detector', dest="detector", choices=['dlib','mt','s3fd','manual'], default='dlib', help="Type of detector. Default 'dlib'. 'mt' (MTCNNv1) - faster, better, almost no jitter, perfect for gathering thousands faces for src-set. It is also good for dst-set, but can generate false faces in frames where main face not recognized! In this case for dst-set use either 'dlib' with '--manual-fix' or '--detector manual'. Manual detector suitable only for dst-set.")
p.add_argument('--multi-gpu', action="store_true", dest="multi_gpu", default=False, help="Enables multi GPU.")
p.add_argument('--manual-fix', action="store_true", dest="manual_fix", default=False, help="Enables manual extract only frames where faces were not recognized.")
@ -158,7 +158,6 @@ if __name__ == "__main__":
args = {'input_dir' : arguments.input_dir,
'output_dir' : arguments.output_dir,
'aligned_dir' : arguments.aligned_dir,
'avaperator_aligned_dir' : arguments.avaperator_aligned_dir,
'model_dir' : arguments.model_dir,
'model_name' : arguments.model_name,
'debug' : arguments.debug,
@ -173,7 +172,6 @@ if __name__ == "__main__":
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory. A directory containing the files you wish to process.")
p.add_argument('--output-dir', required=True, action=fixPathAction, dest="output_dir", help="Output directory. This is where the converted files will be stored.")
p.add_argument('--aligned-dir', action=fixPathAction, dest="aligned_dir", help="Aligned directory. This is where the extracted of dst faces stored.")
p.add_argument('--avaperator-aligned-dir', action=fixPathAction, dest="avaperator_aligned_dir", help="Only for AVATAR model. Directory of aligned avatar operator faces.")
p.add_argument('--model-dir', required=True, action=fixPathAction, dest="model_dir", help="Model dir.")
p.add_argument('--model', required=True, dest="model_name", choices=Path_utils.get_all_dir_names_startswith ( Path(__file__).parent / 'models' , 'Model_'), help="Type of model")
p.add_argument('--debug', action="store_true", dest="debug", default=False, help="Debug converter.")

View file

@ -28,9 +28,9 @@ class ConvertSubprocessor(Subprocessor):
self.device_idx = client_dict['device_idx']
self.device_name = client_dict['device_name']
self.converter = client_dict['converter']
self.input_data = client_dict['input_data']
self.output_path = Path(client_dict['output_dir']) if 'output_dir' in client_dict.keys() else None
self.alignments = client_dict['alignments']
self.avatar_image_paths = client_dict['avatar_image_paths']
self.debug = client_dict['debug']
#transfer and set stdin in order to work code.interact in debug subprocess
@ -50,65 +50,30 @@ class ConvertSubprocessor(Subprocessor):
#override
def process_data(self, data):
idx, filename = data
filename_path = Path(filename)
files_processed = 1
faces_processed = 0
idx, = data
filename = self.input_data[idx][0]
filename_path = Path(filename)
output_filename_path = self.output_path / (filename_path.stem + '.png')
image = None
if self.converter.type == Converter.TYPE_FACE:
if filename_path.stem not in self.alignments.keys():
if not self.debug:
self.log_info ( 'no faces found for %s, copying without faces' % (filename_path.name) )
if (self.converter.type == Converter.TYPE_FACE or self.converter.type == Converter.TYPE_FACE_AVATAR ) \
and filename_path.stem not in self.alignments.keys():
if not self.debug:
self.log_info ( 'no faces found for %s, copying without faces' % (filename_path.name) )
if filename_path.suffix == '.png':
shutil.copy ( str(filename_path), str(output_filename_path) )
else:
image = cv2_imread(str(filename_path))
cv2_imwrite ( str(output_filename_path), image )
else:
image = (cv2_imread(str(filename_path)) / 255.0).astype(np.float32)
image = normalize_channels (image, 3)
if filename_path.suffix == '.png':
shutil.copy ( str(filename_path), str(output_filename_path) )
else:
image = cv2_imread(str(filename_path))
cv2_imwrite ( str(output_filename_path), image )
else:
image = (cv2_imread(str(filename_path)) / 255.0).astype(np.float32)
image = normalize_channels (image, 3)
if self.converter.type == Converter.TYPE_IMAGE:
image = self.converter.cli_convert_image(image, None, self.debug)
if self.debug:
return (1, image)
faces_processed = 1
elif self.converter.type == Converter.TYPE_IMAGE_WITH_LANDMARKS:
#currently unused
if filename_path.suffix == '.png':
dflimg = DFLPNG.load( str(filename_path) )
elif filename_path.suffix == '.jpg':
dflimg = DFLJPG.load ( str(filename_path) )
else:
dflimg = None
if dflimg is not None:
image_landmarks = dflimg.get_landmarks()
image = self.converter.convert_image(image, image_landmarks, self.debug)
if self.debug:
raise NotImplementedError
#for img in image:
# io.show_image ('Debug convert', img )
# cv2.waitKey(0)
faces_processed = 1
else:
self.log_err ("%s is not a dfl image file" % (filename_path.name) )
elif self.converter.type == Converter.TYPE_FACE or self.converter.type == Converter.TYPE_FACE_AVATAR:
ava_face = None
if self.converter.type == Converter.TYPE_FACE_AVATAR:
ava_filename_path = self.avatar_image_paths[idx]
ava_face = (cv2_imread(str(ava_filename_path)) / 255.0).astype(np.float32)
ava_face = normalize_channels (ava_face, 3)
faces = self.alignments[filename_path.stem]
if self.debug:
@ -120,9 +85,9 @@ class ConvertSubprocessor(Subprocessor):
self.log_info ( '\nConverting face_num [%d] in file [%s]' % (face_num, filename_path) )
if self.debug:
debug_images += self.converter.cli_convert_face(image, image_landmarks, self.debug, avaperator_face_bgr=ava_face)
debug_images += self.converter.cli_convert_face(image, image_landmarks, self.debug)
else:
image = self.converter.cli_convert_face(image, image_landmarks, self.debug, avaperator_face_bgr=ava_face)
image = self.converter.cli_convert_face(image, image_landmarks, self.debug)
except Exception as e:
e_str = traceback.format_exc()
@ -135,29 +100,60 @@ class ConvertSubprocessor(Subprocessor):
return (1, debug_images)
faces_processed = len(faces)
elif self.converter.type == Converter.TYPE_IMAGE:
image = (cv2_imread(str(filename_path)) / 255.0).astype(np.float32)
image = normalize_channels (image, 3)
image = self.converter.cli_convert_image(image, None, self.debug)
if not self.debug:
cv2_imwrite (str(output_filename_path), (image*255).astype(np.uint8) )
if self.debug:
return (1, image)
faces_processed = 1
elif self.converter.type == Converter.TYPE_FACE_AVATAR:
max_idx = len(self.input_data)-1
i0 = max (idx-1, 0)
i1 = idx
i2 = min (max_idx, idx+1)
f0 = (cv2_imread( self.input_data[i0][0] ) / 255.0).astype(np.float32)
f0_lmrk = self.input_data[i0][1]
f1 = (cv2_imread( self.input_data[i1][0] ) / 255.0).astype(np.float32)
f1_lmrk = self.input_data[i1][1]
f2 = (cv2_imread( self.input_data[i2][0] ) / 255.0).astype(np.float32)
f2_lmrk = self.input_data[i2][1]
f0, f1, f2 = [ normalize_channels (f, 3) for f in [f0,f1,f2] ]
image = self.converter.cli_convert_face(f0, f0_lmrk, f1, f1_lmrk, f2, f2_lmrk, self.debug)
output_filename_path = self.output_path / self.input_data[idx][2]
if self.debug:
return (1, image)
faces_processed = 1
if image is not None and not self.debug:
cv2_imwrite (str(output_filename_path), (image*255).astype(np.uint8) )
return (0, files_processed, faces_processed)
#overridable
def get_data_name (self, data):
#return string identificator of your data
idx, filename = data
return filename
idx, = data
return self.input_data[idx][0]
#override
def __init__(self, converter, input_path_image_paths, output_path, alignments, avatar_image_paths=None, debug = False):
def __init__(self, converter, input_data, output_path, alignments, debug = False):
super().__init__('Converter', ConvertSubprocessor.Cli, 86400 if debug == True else 60)
self.converter = converter
self.input_data = self.input_path_image_paths = input_path_image_paths
self.input_data = input_data
self.input_data_idxs = [ *range(len(self.input_data)) ]
self.output_path = output_path
self.alignments = alignments
self.avatar_image_paths = avatar_image_paths
self.debug = debug
self.files_processed = 0
@ -171,9 +167,9 @@ class ConvertSubprocessor(Subprocessor):
yield 'CPU%d' % (i), {}, {'device_idx': i,
'device_name': 'CPU%d' % (i),
'converter' : self.converter,
'input_data' : self.input_data,
'output_dir' : str(self.output_path),
'alignments' : self.alignments,
'avatar_image_paths' : self.avatar_image_paths,
'debug': self.debug,
'stdin_fd': sys.stdin.fileno() if self.debug else None
}
@ -196,12 +192,12 @@ class ConvertSubprocessor(Subprocessor):
def get_data(self, host_dict):
if len (self.input_data_idxs) > 0:
idx = self.input_data_idxs.pop(0)
return (idx, self.input_data[idx])
return (idx, )
return None
#override
def on_data_return (self, host_dict, data):
idx, filename = data
idx, = data
self.input_data_idxs.insert(0, idx)
#override
@ -253,9 +249,9 @@ def main (args, device_args):
converter = model.get_converter()
input_path_image_paths = Path_utils.get_image_paths(input_path)
alignments = None
avatar_image_paths = None
if converter.type == Converter.TYPE_FACE or converter.type == Converter.TYPE_FACE_AVATAR:
if converter.type == Converter.TYPE_FACE:
if aligned_dir is None:
io.log_err('Aligned directory not found. Please ensure it exists.')
return
@ -287,21 +283,15 @@ def main (args, device_args):
alignments[ source_filename_stem ] = []
alignments[ source_filename_stem ].append (dflimg.get_source_landmarks())
if converter.type == Converter.TYPE_FACE_AVATAR:
if avaperator_aligned_dir is None:
io.log_err('Avatar operator aligned directory not found. Please ensure it exists.')
return
#avatar_alignments += [ ( str(filepath), dflimg.get_source_landmarks(), dflimg.get_source_filename() ) ]
input_data = [ (p,) for p in input_path_image_paths ]
elif converter.type == Converter.TYPE_FACE_AVATAR:
input_data = []
for filepath in io.progress_bar_generator(input_path_image_paths, "Collecting info"):
filepath = Path(filepath)
avaperator_aligned_path = Path(avaperator_aligned_dir)
if not avaperator_aligned_path.exists():
io.log_err('Avatar operator aligned directory not found. Please ensure it exists.')
return
avatar_image_paths = []
for filename in io.progress_bar_generator( Path_utils.get_image_paths(avaperator_aligned_path) , "Sorting avaperator faces"):
filepath = Path(filename)
if filepath.suffix == '.png':
dflimg = DFLPNG.load( str(filepath) )
elif filepath.suffix == '.jpg':
@ -310,22 +300,19 @@ def main (args, device_args):
dflimg = None
if dflimg is None:
io.log_err ("Fatal error: %s is not a dfl image file" % (filepath.name) )
return
avatar_image_paths += [ (filename, dflimg.get_source_filename() ) ]
avatar_image_paths = [ p[0] for p in sorted(avatar_image_paths, key=operator.itemgetter(1)) ]
io.log_err ("%s is not a dfl image file" % (filepath.name) )
continue
input_data += [ ( str(filepath), dflimg.get_landmarks(), dflimg.get_source_filename() ) ]
if len(input_path_image_paths) < len(avatar_image_paths):
io.log_err("Input faces count must be >= avatar operator faces count.")
return
input_data = sorted(input_data, key=operator.itemgetter(2))
else:
input_data = [ (p,) for p in input_path_image_paths ]
files_processed, faces_processed = ConvertSubprocessor (
converter = converter,
input_path_image_paths = input_path_image_paths,
input_data = input_data,
output_path = output_path,
alignments = alignments,
avatar_image_paths = avatar_image_paths,
debug = args.get('debug',False)
).run()
@ -389,3 +376,29 @@ if model_name == 'AVATAR':
# new_points = np.concatenate( [np.expand_dims(p1,-1),np.expand_dims(p2,-1)], -1 )
#
# alignments[ a[i] ][0] = LandmarksProcessor.transform_points (new_points, m0, True).astype(np.int32)
"""
elif self.converter.type == Converter.TYPE_IMAGE_WITH_LANDMARKS:
#currently unused
if filename_path.suffix == '.png':
dflimg = DFLPNG.load( str(filename_path) )
elif filename_path.suffix == '.jpg':
dflimg = DFLJPG.load ( str(filename_path) )
else:
dflimg = None
if dflimg is not None:
image_landmarks = dflimg.get_landmarks()
image = self.converter.convert_image(image, image_landmarks, self.debug)
if self.debug:
raise NotImplementedError
#for img in image:
# io.show_image ('Debug convert', img )
# cv2.waitKey(0)
faces_processed = 1
else:
self.log_err ("%s is not a dfl image file" % (filename_path.name) )
"""

View file

@ -6,6 +6,7 @@ import multiprocessing
import shutil
from pathlib import Path
import numpy as np
import math
import mathlib
import imagelib
import cv2
@ -21,6 +22,8 @@ from nnlib import nnlib
from joblib import Subprocessor
from interact import interact as io
DEBUG = False
class ExtractSubprocessor(Subprocessor):
class Data(object):
def __init__(self, filename=None, rects=None, landmarks = None, landmarks_accurate=True, pitch_yaw_roll=None, final_output_files = None):
@ -44,6 +47,11 @@ class ExtractSubprocessor(Subprocessor):
self.cpu_only = client_dict['device_type'] == 'CPU'
self.final_output_path = Path(client_dict['final_output_dir']) if 'final_output_dir' in client_dict.keys() else None
self.debug_dir = client_dict['debug_dir']
#transfer and set stdin in order to work code.interact in debug subprocess
stdin_fd = client_dict['stdin_fd']
if stdin_fd is not None and DEBUG:
sys.stdin = os.fdopen(stdin_fd)
self.cached_image = (None, None)
@ -224,10 +232,12 @@ class ExtractSubprocessor(Subprocessor):
rect = np.array(rect)
if self.face_type == FaceType.MARK_ONLY:
image_to_face_mat = None
face_image = image
face_image_landmarks = image_landmarks
else:
image_to_face_mat = LandmarksProcessor.get_transform_mat (image_landmarks, self.image_size, self.face_type)
face_image = cv2.warpAffine(image, image_to_face_mat, (self.image_size, self.image_size), cv2.INTER_LANCZOS4)
face_image_landmarks = LandmarksProcessor.transform_points (image_landmarks, image_to_face_mat)
@ -239,8 +249,8 @@ class ExtractSubprocessor(Subprocessor):
if landmarks_area > 4*rect_area: #get rid of faces which umeyama-landmark-area > 4*detector-rect-area
continue
if self.debug_dir is not None:
LandmarksProcessor.draw_rect_landmarks (debug_image, rect, image_landmarks, self.image_size, self.face_type, transparent_mask=True)
if self.debug_dir is not None:
LandmarksProcessor.draw_rect_landmarks (debug_image, rect, image_landmarks, self.image_size, self.face_type, transparent_mask=True)
if filename_path.suffix == '.jpg':
@ -308,7 +318,7 @@ class ExtractSubprocessor(Subprocessor):
self.devices = ExtractSubprocessor.get_devices_for_config(self.manual, self.type, multi_gpu, cpu_only)
no_response_time_sec = 60 if not self.manual else 999999
no_response_time_sec = 60 if not self.manual and not DEBUG else 999999
super().__init__('Extractor', ExtractSubprocessor.Cli, no_response_time_sec)
#override
@ -354,7 +364,8 @@ class ExtractSubprocessor(Subprocessor):
'image_size': self.image_size,
'face_type': self.face_type,
'debug_dir': self.debug_dir,
'final_output_dir': str(self.final_output_path)}
'final_output_dir': str(self.final_output_path),
'stdin_fd': sys.stdin.fileno() }
for (device_idx, device_type, device_name, device_total_vram_gb) in self.devices:
@ -632,7 +643,7 @@ class ExtractSubprocessor(Subprocessor):
return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in range( min(8, multiprocessing.cpu_count() // 2) ) ]
elif type == 'final':
return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in range(min(8, multiprocessing.cpu_count())) ]
return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in (range(min(8, multiprocessing.cpu_count())) if not DEBUG else [0]) ]
class DeletedFilesSearcherSubprocessor(Subprocessor):
class Cli(Subprocessor.Cli):

View file

@ -423,14 +423,11 @@ def sort_by_hist_dissim(input_path):
else:
dflimg = None
if dflimg is None:
io.log_err ("%s is not a dfl image file" % (filepath.name) )
trash_img_list.append ([str(filepath)])
continue
image = cv2_imread(str(filepath))
face_mask = LandmarksProcessor.get_image_hull_mask (image.shape, dflimg.get_landmarks())
image = (image*face_mask).astype(np.uint8)
if dflimg is not None:
face_mask = LandmarksProcessor.get_image_hull_mask (image.shape, dflimg.get_landmarks())
image = (image*face_mask).astype(np.uint8)
img_list.append ([str(filepath), cv2.calcHist([cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)], [0], None, [256], [0, 256]), 0 ])

View file

@ -522,7 +522,7 @@ class ModelBase(object):
return imagelib.equalize_and_stack_square(images)
def generate_next_sample(self):
return [next(generator) for generator in self.generator_list]
return [ generator.generate_next() for generator in self.generator_list]
def train_one_iter(self):

View file

@ -378,7 +378,6 @@ class RecycleGANModel(ModelBase):
return x
return func
nnlib.UNet = UNet
@staticmethod
def UNetTemporalPredictor(output_nc, use_batch_norm, ngf=64, use_dropout=False):

View file

@ -703,6 +703,12 @@ class SAEModel(ModelBase):
return func
SAEModel.downscale = downscale
#def downscale (dim, padding='zero', norm='', act='', **kwargs):
# def func(x):
# return BlurPool()( Norm(norm)( Act(act) (Conv2D(dim, kernel_size=5, strides=1, padding=padding)(x)) ) )
# return func
#SAEModel.downscale = downscale
def upscale(dim, padding='zero', norm='', act='', **kwargs):
def func(x):

View file

@ -89,6 +89,8 @@ dssim = nnlib.dssim
PixelShuffler = nnlib.PixelShuffler
SubpixelUpscaler = nnlib.SubpixelUpscaler
Scale = nnlib.Scale
BlurPool = nnlib.BlurPool
SelfAttention = nnlib.SelfAttention
CAInitializerMP = nnlib.CAInitializerMP
@ -462,6 +464,51 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
nnlib.PixelShuffler = PixelShuffler
nnlib.SubpixelUpscaler = PixelShuffler
class BlurPool(KL.Layer):
"""
https://arxiv.org/abs/1904.11486 https://github.com/adobe/antialiased-cnns
"""
def __init__(self, filt_size=3, stride=2, **kwargs):
self.strides = (stride,stride)
self.filt_size = filt_size
self.padding = ( (int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2)) ), (int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2)) ) )
if(self.filt_size==1):
self.a = np.array([1.,])
elif(self.filt_size==2):
self.a = np.array([1., 1.])
elif(self.filt_size==3):
self.a = np.array([1., 2., 1.])
elif(self.filt_size==4):
self.a = np.array([1., 3., 3., 1.])
elif(self.filt_size==5):
self.a = np.array([1., 4., 6., 4., 1.])
elif(self.filt_size==6):
self.a = np.array([1., 5., 10., 10., 5., 1.])
elif(self.filt_size==7):
self.a = np.array([1., 6., 15., 20., 15., 6., 1.])
super(BlurPool, self).__init__(**kwargs)
def compute_output_shape(self, input_shape):
height = input_shape[1] // self.strides[0]
width = input_shape[2] // self.strides[1]
channels = input_shape[3]
return (input_shape[0], height, width, channels)
def call(self, x):
k = self.a
k = k[:,None]*k[None,:]
k = k / np.sum(k)
k = np.tile (k[:,:,None,None], (1,1,K.int_shape(x)[-1],1) )
k = K.constant (k, dtype=K.floatx() )
x = K.spatial_2d_padding(x, padding=self.padding)
x = K.depthwise_conv2d(x, k, strides=self.strides, padding='valid')
return x
nnlib.BlurPool = BlurPool
class Scale(KL.Layer):
"""
@ -496,6 +543,43 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
nnlib.Scale = Scale
class SelfAttention(KL.Layer):
def __init__(self, nc, squeeze_factor=8, **kwargs):
assert nc//squeeze_factor > 0, f"Input channels must be >= {squeeze_factor}, recieved nc={nc}"
self.nc = nc
self.squeeze_factor = squeeze_factor
super(SelfAttention, self).__init__(**kwargs)
def compute_output_shape(self, input_shape):
return (input_shape[0], input_shape[1], input_shape[2], self.nc)
def call(self, inp):
x = inp
shape_x = x.get_shape().as_list()
f = Conv2D(self.nc//self.squeeze_factor, 1, kernel_regularizer=keras.regularizers.l2(1e-4))(x)
g = Conv2D(self.nc//self.squeeze_factor, 1, kernel_regularizer=keras.regularizers.l2(1e-4))(x)
h = Conv2D(self.nc, 1, kernel_regularizer=keras.regularizers.l2(1e-4))(x)
shape_f = f.get_shape().as_list()
shape_g = g.get_shape().as_list()
shape_h = h.get_shape().as_list()
flat_f = Reshape( (-1, shape_f[-1]) )(f)
flat_g = Reshape( (-1, shape_g[-1]) )(g)
flat_h = Reshape( (-1, shape_h[-1]) )(h)
s = Lambda(lambda x: K.batch_dot(x[0], keras.layers.Permute((2,1))(x[1]) ))([flat_g, flat_f])
beta = keras.layers.Softmax(axis=-1)(s)
o = Lambda(lambda x: K.batch_dot(x[0], x[1]))([beta, flat_h])
o = Reshape(shape_x[1:])(o)
o = Scale()(o)
out = Add()([o, inp])
return out
nnlib.SelfAttention = SelfAttention
class Adam(keras.optimizers.Optimizer):
"""Adam optimizer.

View file

@ -13,7 +13,18 @@ class SampleGeneratorBase(object):
self.samples_path = Path(samples_path)
self.debug = debug
self.batch_size = 1 if self.debug else batch_size
self.last_generation = None
self.active = True
def set_active(self, is_active):
self.active = is_active
def generate_next(self):
if not self.active and self.last_generation is not None:
return self.last_generation
self.last_generation = next(self)
return self.last_generation
#overridable
def __iter__(self):
#implement your own iterator

View file

@ -8,7 +8,7 @@ from samplelib import SampleType, SampleProcessor, SampleLoader, SampleGenerator
'''
output_sample_types = [
[SampleProcessor.TypeFlags, size, (optional)random_sub_size] ,
[SampleProcessor.TypeFlags, size, (optional) {} opts ] ,
...
]
'''
@ -46,9 +46,9 @@ class SampleGeneratorFaceTemporal(SampleGeneratorBase):
raise ValueError('No training data provided.')
mult_max = 1
l = samples_len - (self.temporal_image_count-1)*mult_max + 1
l = samples_len - ( (self.temporal_image_count)*mult_max - (mult_max-1) )
samples_idxs = [ *range(l) ] [generator_id::self.generators_count]
samples_idxs = [ *range(l+1) ] [generator_id::self.generators_count]
if len(samples_idxs) - self.temporal_image_count < 0:
raise ValueError('Not enough samples to fit temporal line.')
@ -67,7 +67,7 @@ class SampleGeneratorFaceTemporal(SampleGeneratorBase):
idx = shuffle_idxs.pop()
temporal_samples = []
mult = np.random.randint(mult_max)
mult = np.random.randint(mult_max)+1
for i in range( self.temporal_image_count ):
sample = samples[ idx+i*mult ]
try:

View file

@ -43,7 +43,8 @@ class SampleGeneratorImageTemporal(SampleGeneratorBase):
raise ValueError('No training data provided.')
mult_max = 4
samples_sub_len = samples_len - (self.temporal_image_count-1)*mult_max
samples_sub_len = samples_len - ( (self.temporal_image_count)*mult_max - (mult_max-1) )
if samples_sub_len <= 0:
raise ValueError('Not enough samples to fit temporal line.')
@ -61,7 +62,7 @@ class SampleGeneratorImageTemporal(SampleGeneratorBase):
idx = shuffle_idxs.pop()
temporal_samples = []
mult = np.random.randint(mult_max)
mult = np.random.randint(mult_max)+1
for i in range( self.temporal_image_count ):
sample = samples[ idx+i*mult ]
try:

View file

@ -70,10 +70,11 @@ class SampleProcessor(object):
IMG_TYPE_END = 10
FACE_TYPE_BEGIN = 10
FACE_TYPE_HALF = 10
FACE_TYPE_FULL = 11
FACE_TYPE_HEAD = 12 # currently unused
FACE_TYPE_AVATAR = 13 # currently unused
FACE_TYPE_HALF = 10
FACE_TYPE_FULL = 11
FACE_TYPE_HEAD = 12 #currently unused
FACE_TYPE_AVATAR = 13 #currently unused
FACE_TYPE_FULL_NO_ALIGN = 14
FACE_TYPE_END = 20
MODE_BEGIN = 40
@ -118,10 +119,10 @@ class SampleProcessor(object):
sample_rnd_seed = np.random.randint(0x80000000)
SPTF_FACETYPE_TO_FACETYPE = {SPTF.FACE_TYPE_HALF: FaceType.HALF,
SPTF.FACE_TYPE_FULL: FaceType.FULL,
SPTF.FACE_TYPE_HEAD: FaceType.HEAD,
SPTF.FACE_TYPE_AVATAR: FaceType.AVATAR}
SPTF_FACETYPE_TO_FACETYPE = { SPTF.FACE_TYPE_HALF : FaceType.HALF,
SPTF.FACE_TYPE_FULL : FaceType.FULL,
SPTF.FACE_TYPE_HEAD : FaceType.HEAD,
SPTF.FACE_TYPE_FULL_NO_ALIGN : FaceType.FULL_NO_ALIGN }
outputs = []
for opts in output_sample_types:
@ -175,6 +176,20 @@ class SampleProcessor(object):
if mode_type == SPTF.NONE:
raise ValueError('expected MODE_ type')
def do_transform(img, mask):
warp = (img_type==SPTF.IMG_WARPED or img_type==SPTF.IMG_WARPED_TRANSFORMED)
transform = (img_type==SPTF.IMG_WARPED_TRANSFORMED or img_type==SPTF.IMG_TRANSFORMED)
flip = img_type != SPTF.IMG_WARPED
img = imagelib.warp_by_params (params, img, warp, transform, flip, True)
if mask is not None:
mask = imagelib.warp_by_params (params, mask, warp, transform, flip, False)
if len(mask.shape) == 2:
mask = mask[...,np.newaxis]
img = np.concatenate( (img, mask ), -1 )
return img
img = cached_images.get(img_type, None)
if img is None:
@ -199,26 +214,30 @@ class SampleProcessor(object):
if cur_sample.ie_polys is not None:
cur_sample.ie_polys.overlay_mask(mask)
warp = (img_type == SPTF.IMG_WARPED or img_type == SPTF.IMG_WARPED_TRANSFORMED)
transform = (img_type == SPTF.IMG_WARPED_TRANSFORMED or img_type == SPTF.IMG_TRANSFORMED)
flip = img_type != SPTF.IMG_WARPED
img = imagelib.warp_by_params(params, img, warp, transform, flip, True)
if mask is not None:
mask = imagelib.warp_by_params(params, mask, warp, transform, flip, False)[..., np.newaxis]
img = np.concatenate((img, mask), -1)
if sample.face_type == FaceType.MARK_ONLY:
if mask is not None:
img = np.concatenate( (img, mask), -1 )
else:
img = do_transform (img, mask)
cached_images[img_type] = img
if is_face_sample and target_face_type != SPTF.NONE:
ft = SPTF_FACETYPE_TO_FACETYPE[target_face_type]
if ft > sample.face_type:
raise Exception(
'sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (
sample.filename, sample.face_type, ft))
img = cv2.warpAffine(img, LandmarksProcessor.get_transform_mat(sample.landmarks, resolution, ft),
(resolution, resolution), flags=cv2.INTER_CUBIC)
raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, ft) )
if sample.face_type == FaceType.MARK_ONLY:
img = cv2.warpAffine( img, LandmarksProcessor.get_transform_mat (sample.landmarks, sample.shape[0], ft), (sample.shape[0],sample.shape[0]), flags=cv2.INTER_CUBIC )
mask = img[...,3:4] if img.shape[2] > 3 else None
img = img[...,0:3]
img = do_transform (img, mask)
img = cv2.resize( img, (resolution,resolution), cv2.INTER_CUBIC )
else:
img = cv2.warpAffine( img, LandmarksProcessor.get_transform_mat (sample.landmarks, resolution, ft), (resolution,resolution), flags=cv2.INTER_CUBIC )
else:
img = cv2.resize(img, (resolution, resolution), cv2.INTER_CUBIC)

View file

@ -11,7 +11,7 @@ def get_image_paths(dir_path, image_extensions=image_extensions):
for x in list(scandir(str(dir_path))):
if any([x.name.lower().endswith(ext) for ext in image_extensions]):
result.append(x.path)
return result
return sorted(result)
def get_image_unique_filestem_paths(dir_path, verbose_print_func=None):
result = get_image_paths(dir_path)
@ -26,7 +26,7 @@ def get_image_unique_filestem_paths(dir_path, verbose_print_func=None):
continue
result_dup.add(f_stem)
return result
return sorted(result)
def get_file_paths(dir_path):
dir_path = Path (dir_path)
@ -34,7 +34,7 @@ def get_file_paths(dir_path):
result = []
if dir_path.exists():
return [ x.path for x in list(scandir(str(dir_path))) if x.is_file() ]
return result
return sorted(result)
def get_all_dir_names (dir_path):
dir_path = Path (dir_path)
@ -43,7 +43,7 @@ def get_all_dir_names (dir_path):
if dir_path.exists():
return [ x.name for x in list(scandir(str(dir_path))) if x.is_dir() ]
return result
return sorted(result)
def get_all_dir_names_startswith (dir_path, startswith):
dir_path = Path (dir_path)
@ -54,14 +54,14 @@ def get_all_dir_names_startswith (dir_path, startswith):
for x in list(scandir(str(dir_path))):
if x.name.lower().startswith(startswith):
result.append ( x.name[len(startswith):] )
return result
return sorted(result)
def get_first_file_by_stem (dir_path, stem, exts=None):
dir_path = Path (dir_path)
stem = stem.lower()
if dir_path.exists():
for x in list(scandir(str(dir_path))):
for x in sorted(list(scandir(str(dir_path)))):
if not x.is_file():
continue
xp = Path(x.path)
@ -80,4 +80,4 @@ def delete_all_files (dir_path):
paths = get_file_paths(dir_path)
for p in paths:
p = Path(p)
p.unlink()
p.unlink()