mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-22 06:23:20 -07:00
fix after merge
This commit is contained in:
parent
16fd5a8f27
commit
3071165883
1 changed files with 8 additions and 8 deletions
|
@ -455,13 +455,13 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
||||||
if self.options['background_power'] > 0:
|
if self.options['background_power'] > 0:
|
||||||
bg_factor = self.options['background_power']
|
bg_factor = self.options['background_power']
|
||||||
if self.options['ms_ssim_loss']:
|
if self.options['ms_ssim_loss']:
|
||||||
gpu_src_loss = 10 * nn.MsSsim(resolution)(gpu_target_src_anti_masked, gpu_pred_src_src_anti_masked, max_val=1.0)
|
gpu_src_loss = 10 * nn.MsSsim(resolution)(gpu_target_src, gpu_pred_src_src, max_val=1.0)
|
||||||
else:
|
else:
|
||||||
if resolution < 256:
|
if resolution < 256:
|
||||||
gpu_src_loss += bg_factor * tf.reduce_mean ( 10*nn.dssim(gpu_target_src, gpu_pred_src_src, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
gpu_src_loss += bg_factor * tf.reduce_mean ( 10*nn.dssim(gpu_target_src, gpu_pred_src_src, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
||||||
else:
|
else:
|
||||||
gpu_src_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_src, gpu_pred_src_src, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
gpu_src_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_src, gpu_pred_src_src, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
||||||
gpu_src_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_src, gpu_pred_src_src, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
|
gpu_src_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_src, gpu_pred_src_src, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
|
||||||
gpu_src_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_src - gpu_pred_src_src ), axis=[1,2,3])
|
gpu_src_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_src - gpu_pred_src_src ), axis=[1,2,3])
|
||||||
|
|
||||||
face_style_power = self.options['face_style_power'] / 100.0
|
face_style_power = self.options['face_style_power'] / 100.0
|
||||||
|
@ -497,13 +497,13 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
||||||
if self.options['background_power'] > 0:
|
if self.options['background_power'] > 0:
|
||||||
bg_factor = self.options['background_power']
|
bg_factor = self.options['background_power']
|
||||||
if self.options['ms_ssim_loss']:
|
if self.options['ms_ssim_loss']:
|
||||||
gpu_src_loss = 10 * nn.MsSsim(resolution)(gpu_target_dst_anti_masked, gpu_pred_dst_dst_anti_masked, max_val=1.0)
|
gpu_src_loss = 10 * nn.MsSsim(resolution)(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0)
|
||||||
else:
|
else:
|
||||||
if resolution < 256:
|
if resolution < 256:
|
||||||
gpu_dst_loss += bg_factor * tf.reduce_mean ( 10*nn.dssim(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
gpu_dst_loss += bg_factor * tf.reduce_mean ( 10*nn.dssim(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
||||||
else:
|
else:
|
||||||
gpu_dst_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
gpu_dst_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
||||||
gpu_dst_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
|
gpu_dst_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
|
||||||
gpu_dst_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_dst - gpu_pred_dst_dst ), axis=[1,2,3])
|
gpu_dst_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_dst - gpu_pred_dst_dst ), axis=[1,2,3])
|
||||||
|
|
||||||
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] )
|
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] )
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue