Merge pull request #124 from faceshiftlabs/fix/fs-aug-random-seeding

Fixes bug with `fs-aug` color mode
This commit is contained in:
Jeremy Hummel 2021-03-20 21:07:25 -07:00 committed by GitHub
commit 3013befedf
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 18 additions and 12 deletions

View file

@ -10,6 +10,10 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- [Freezeable layers (encoder/decoder/etc.)](https://github.com/faceshiftlabs/DeepFaceLab/tree/feature/freezable-weights)
- [GAN stability improvements](https://github.com/faceshiftlabs/DeepFaceLab/tree/feature/gan-updates)
## [1.2.1] - 2020-03-20
### Fixed
- Fixes bug with `fs-aug` color mode.
## [1.2.0] - 2020-03-17
### Added
- [Random color training option](doc/features/random-color/README.md)

View file

@ -1,7 +1,7 @@
import cv2
import numpy as np
from numpy import linalg as npla
from random import random, shuffle, choice
import random
from scipy.stats import special_ortho_group
import scipy as sp
@ -371,12 +371,12 @@ def color_transfer(ct_mode, img_src, img_trg):
# imported from faceswap
def color_augmentation(img):
def color_augmentation(img, seed=None):
""" Color adjust RGB image """
face = img
face = np.clip(face*255.0, 0, 255).astype(np.uint8)
face = random_clahe(face)
face = random_lab(face)
face = random_clahe(face, seed)
face = random_lab(face, seed)
img[:, :, :3] = face
return (face / 255.0).astype(np.float32)
@ -400,13 +400,14 @@ def random_lab_rotation(image, seed=None):
return image
def random_lab(image):
def random_lab(image, seed=None):
""" Perform random color/lightness adjustment in L*a*b* colorspace """
random.seed(seed)
amount_l = 30 / 100
amount_ab = 8 / 100
randoms = [(random() * amount_l * 2) - amount_l, # L adjust
(random() * amount_ab * 2) - amount_ab, # A adjust
(random() * amount_ab * 2) - amount_ab] # B adjust
randoms = [(random.random() * amount_l * 2) - amount_l, # L adjust
(random.random() * amount_ab * 2) - amount_ab, # A adjust
(random.random() * amount_ab * 2) - amount_ab] # B adjust
image = cv2.cvtColor( # pylint:disable=no-member
image, cv2.COLOR_BGR2LAB).astype("float32") / 255.0 # pylint:disable=no-member
@ -419,15 +420,16 @@ def random_lab(image):
cv2.COLOR_LAB2BGR) # pylint:disable=no-member
return image
def random_clahe(image):
def random_clahe(image, seed=None):
""" Randomly perform Contrast Limited Adaptive Histogram Equalization """
contrast_random = random()
random.seed(seed)
contrast_random = random.random()
if contrast_random > 50 / 100:
return image
# base_contrast = image.shape[0] // 128
base_contrast = 1 # testing because it breaks on small sizes
grid_base = random() * 4
grid_base = random.random() * 4
contrast_adjustment = int(grid_base * (base_contrast / 2))
grid_size = base_contrast + contrast_adjustment

View file

@ -207,7 +207,7 @@ class SampleProcessor(object):
# Apply random color transfer
if ct_mode is not None and ct_sample is not None or ct_mode == 'fs-aug':
if ct_mode == 'fs-aug':
img = imagelib.color_augmentation(img)
img = imagelib.color_augmentation(img, sample_rnd_seed)
else:
if ct_sample_bgr is None:
ct_sample_bgr = ct_sample.load_bgr()