mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-19 21:13:20 -07:00
random jpeg
This commit is contained in:
parent
b725ac164d
commit
2be49246fd
2 changed files with 13 additions and 2 deletions
|
@ -59,6 +59,7 @@ class SAEHDModel(ModelBase):
|
|||
default_random_downsample = self.options['random_downsample'] = self.load_or_def_option('random_downsample', False)
|
||||
default_random_noise = self.options['random_noise'] = self.load_or_def_option('random_noise', False)
|
||||
default_random_blur = self.options['random_blur'] = self.load_or_def_option('random_blur', False)
|
||||
default_random_jpeg = self.options['random_jpeg'] = self.load_or_def_option('random_jpeg', False)
|
||||
|
||||
default_background_power = self.options['background_power'] = self.load_or_def_option('background_power', 0.0)
|
||||
default_true_face_power = self.options['true_face_power'] = self.load_or_def_option('true_face_power', 0.0)
|
||||
|
@ -165,8 +166,8 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
|
||||
self.options['random_downsample'] = io.input_bool("Enable random downsample of samples", default_random_downsample, help_message="")
|
||||
self.options['random_noise'] = io.input_bool("Enable random noise added to samples", default_random_noise, help_message="")
|
||||
self.options['random_blur'] = io.input_bool("Enable random blur of samples", False, help_message="")
|
||||
# self.options['random_jpeg'] = io.input_bool("Enable random jpeg compression of samples", False, help_message="")
|
||||
self.options['random_blur'] = io.input_bool("Enable random blur of samples", default_random_blur, help_message="")
|
||||
self.options['random_jpeg'] = io.input_bool("Enable random jpeg compression of samples", default_random_jpeg, help_message="")
|
||||
|
||||
self.options['gan_version'] = np.clip (io.input_int("GAN version", default_gan_version, add_info="2 or 3", help_message="Choose GAN version (v2: 7/16/2020, v3: 1/3/2021):"), 2, 3)
|
||||
|
||||
|
@ -758,6 +759,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
'random_downsample': self.options['random_downsample'],
|
||||
'random_noise': self.options['random_noise'],
|
||||
'random_blur': self.options['random_blur'],
|
||||
'random_jpeg': self.options['random_jpeg'],
|
||||
'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode,
|
||||
'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
|
@ -773,6 +775,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
'random_downsample': self.options['random_downsample'],
|
||||
'random_noise': self.options['random_noise'],
|
||||
'random_blur': self.options['random_blur'],
|
||||
'random_jpeg': self.options['random_jpeg'],
|
||||
'transform':True, 'channel_type' : channel_type, 'ct_mode': fs_aug,
|
||||
'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : channel_type, 'ct_mode': fs_aug, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
|
|
|
@ -115,6 +115,7 @@ class SampleProcessor(object):
|
|||
random_downsample = opts.get('random_downsample', False)
|
||||
random_noise = opts.get('random_noise', False)
|
||||
random_blur = opts.get('random_blur', False)
|
||||
random_jpeg = opts.get('random_jpeg', False)
|
||||
motion_blur = opts.get('motion_blur', None)
|
||||
gaussian_blur = opts.get('gaussian_blur', None)
|
||||
random_bilinear_resize = opts.get('random_bilinear_resize', None)
|
||||
|
@ -258,6 +259,13 @@ class SampleProcessor(object):
|
|||
|
||||
img = cv2.GaussianBlur(img, (kernel_size, kernel_size), blur_sigma)
|
||||
|
||||
# Apply random jpeg compression
|
||||
if random_jpeg:
|
||||
jpeg_compression_level = np.random.randint(50, 85)
|
||||
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_compression_level]
|
||||
_, encimg = cv2.imencode('.jpg', img, encode_param)
|
||||
img = cv2.imdecode(encimg, 1)
|
||||
|
||||
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate)
|
||||
img = np.clip(img.astype(np.float32), 0, 1)
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue