mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-07 05:22:06 -07:00
ConverterMasked: removed default transfercolor,
added Apply color transfer to predicted face - modes rct / lct
This commit is contained in:
parent
218a5cfd05
commit
2bd983703e
2 changed files with 174 additions and 16 deletions
|
@ -7,6 +7,151 @@ from scipy.spatial import Delaunay
|
|||
from PIL import Image, ImageDraw, ImageFont
|
||||
from nnlib import nnlib
|
||||
|
||||
def reinhard_color_transfer(target, source, clip=False, preserve_paper=False, source_mask=None, target_mask=None):
|
||||
"""
|
||||
Transfers the color distribution from the source to the target
|
||||
image using the mean and standard deviations of the L*a*b*
|
||||
color space.
|
||||
|
||||
This implementation is (loosely) based on to the "Color Transfer
|
||||
between Images" paper by Reinhard et al., 2001.
|
||||
|
||||
Parameters:
|
||||
-------
|
||||
source: NumPy array
|
||||
OpenCV image in BGR color space (the source image)
|
||||
target: NumPy array
|
||||
OpenCV image in BGR color space (the target image)
|
||||
clip: Should components of L*a*b* image be scaled by np.clip before
|
||||
converting back to BGR color space?
|
||||
If False then components will be min-max scaled appropriately.
|
||||
Clipping will keep target image brightness truer to the input.
|
||||
Scaling will adjust image brightness to avoid washed out portions
|
||||
in the resulting color transfer that can be caused by clipping.
|
||||
preserve_paper: Should color transfer strictly follow methodology
|
||||
layed out in original paper? The method does not always produce
|
||||
aesthetically pleasing results.
|
||||
If False then L*a*b* components will scaled using the reciprocal of
|
||||
the scaling factor proposed in the paper. This method seems to produce
|
||||
more consistently aesthetically pleasing results
|
||||
|
||||
Returns:
|
||||
-------
|
||||
transfer: NumPy array
|
||||
OpenCV image (w, h, 3) NumPy array (uint8)
|
||||
"""
|
||||
|
||||
|
||||
# convert the images from the RGB to L*ab* color space, being
|
||||
# sure to utilizing the floating point data type (note: OpenCV
|
||||
# expects floats to be 32-bit, so use that instead of 64-bit)
|
||||
source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype(np.float32)
|
||||
target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype(np.float32)
|
||||
|
||||
# compute color statistics for the source and target images
|
||||
src_input = source if source_mask is None else source*source_mask
|
||||
tgt_input = target if target_mask is None else target*target_mask
|
||||
(lMeanSrc, lStdSrc, aMeanSrc, aStdSrc, bMeanSrc, bStdSrc) = lab_image_stats(src_input)
|
||||
(lMeanTar, lStdTar, aMeanTar, aStdTar, bMeanTar, bStdTar) = lab_image_stats(tgt_input)
|
||||
|
||||
# subtract the means from the target image
|
||||
(l, a, b) = cv2.split(target)
|
||||
l -= lMeanTar
|
||||
a -= aMeanTar
|
||||
b -= bMeanTar
|
||||
|
||||
if preserve_paper:
|
||||
# scale by the standard deviations using paper proposed factor
|
||||
l = (lStdTar / lStdSrc) * l
|
||||
a = (aStdTar / aStdSrc) * a
|
||||
b = (bStdTar / bStdSrc) * b
|
||||
else:
|
||||
# scale by the standard deviations using reciprocal of paper proposed factor
|
||||
l = (lStdSrc / lStdTar) * l
|
||||
a = (aStdSrc / aStdTar) * a
|
||||
b = (bStdSrc / bStdTar) * b
|
||||
|
||||
# add in the source mean
|
||||
l += lMeanSrc
|
||||
a += aMeanSrc
|
||||
b += bMeanSrc
|
||||
|
||||
# clip/scale the pixel intensities to [0, 255] if they fall
|
||||
# outside this range
|
||||
l = _scale_array(l, clip=clip)
|
||||
a = _scale_array(a, clip=clip)
|
||||
b = _scale_array(b, clip=clip)
|
||||
|
||||
# merge the channels together and convert back to the RGB color
|
||||
# space, being sure to utilize the 8-bit unsigned integer data
|
||||
# type
|
||||
transfer = cv2.merge([l, a, b])
|
||||
transfer = cv2.cvtColor(transfer.astype(np.uint8), cv2.COLOR_LAB2BGR)
|
||||
|
||||
# return the color transferred image
|
||||
return transfer
|
||||
|
||||
def linear_color_transfer(target_img, source_img, mode='pca', eps=1e-5):
|
||||
'''
|
||||
Matches the colour distribution of the target image to that of the source image
|
||||
using a linear transform.
|
||||
Images are expected to be of form (w,h,c) and float in [0,1].
|
||||
Modes are chol, pca or sym for different choices of basis.
|
||||
'''
|
||||
mu_t = target_img.mean(0).mean(0)
|
||||
t = target_img - mu_t
|
||||
t = t.transpose(2,0,1).reshape(3,-1)
|
||||
Ct = t.dot(t.T) / t.shape[1] + eps * np.eye(t.shape[0])
|
||||
mu_s = source_img.mean(0).mean(0)
|
||||
s = source_img - mu_s
|
||||
s = s.transpose(2,0,1).reshape(3,-1)
|
||||
Cs = s.dot(s.T) / s.shape[1] + eps * np.eye(s.shape[0])
|
||||
if mode == 'chol':
|
||||
chol_t = np.linalg.cholesky(Ct)
|
||||
chol_s = np.linalg.cholesky(Cs)
|
||||
ts = chol_s.dot(np.linalg.inv(chol_t)).dot(t)
|
||||
if mode == 'pca':
|
||||
eva_t, eve_t = np.linalg.eigh(Ct)
|
||||
Qt = eve_t.dot(np.sqrt(np.diag(eva_t))).dot(eve_t.T)
|
||||
eva_s, eve_s = np.linalg.eigh(Cs)
|
||||
Qs = eve_s.dot(np.sqrt(np.diag(eva_s))).dot(eve_s.T)
|
||||
ts = Qs.dot(np.linalg.inv(Qt)).dot(t)
|
||||
if mode == 'sym':
|
||||
eva_t, eve_t = np.linalg.eigh(Ct)
|
||||
Qt = eve_t.dot(np.sqrt(np.diag(eva_t))).dot(eve_t.T)
|
||||
Qt_Cs_Qt = Qt.dot(Cs).dot(Qt)
|
||||
eva_QtCsQt, eve_QtCsQt = np.linalg.eigh(Qt_Cs_Qt)
|
||||
QtCsQt = eve_QtCsQt.dot(np.sqrt(np.diag(eva_QtCsQt))).dot(eve_QtCsQt.T)
|
||||
ts = np.linalg.inv(Qt).dot(QtCsQt).dot(np.linalg.inv(Qt)).dot(t)
|
||||
matched_img = ts.reshape(*target_img.transpose(2,0,1).shape).transpose(1,2,0)
|
||||
matched_img += mu_s
|
||||
matched_img[matched_img>1] = 1
|
||||
matched_img[matched_img<0] = 0
|
||||
return matched_img
|
||||
|
||||
def lab_image_stats(image):
|
||||
# compute the mean and standard deviation of each channel
|
||||
(l, a, b) = cv2.split(image)
|
||||
(lMean, lStd) = (l.mean(), l.std())
|
||||
(aMean, aStd) = (a.mean(), a.std())
|
||||
(bMean, bStd) = (b.mean(), b.std())
|
||||
|
||||
# return the color statistics
|
||||
return (lMean, lStd, aMean, aStd, bMean, bStd)
|
||||
|
||||
def _scale_array(arr, clip=True):
|
||||
if clip:
|
||||
return np.clip(arr, 0, 255)
|
||||
|
||||
mn = arr.min()
|
||||
mx = arr.max()
|
||||
scale_range = (max([mn, 0]), min([mx, 255]))
|
||||
|
||||
if mn < scale_range[0] or mx > scale_range[1]:
|
||||
return (scale_range[1] - scale_range[0]) * (arr - mn) / (mx - mn) + scale_range[0]
|
||||
|
||||
return arr
|
||||
|
||||
def channel_hist_match(source, template, hist_match_threshold=255, mask=None):
|
||||
# Code borrowed from:
|
||||
# https://stackoverflow.com/questions/32655686/histogram-matching-of-two-images-in-python-2-x
|
||||
|
@ -154,7 +299,6 @@ def morph_by_points (image, sp, dp):
|
|||
|
||||
result_image = np.zeros(image.shape, dtype = image.dtype)
|
||||
|
||||
|
||||
for tri in Delaunay(dp).simplices:
|
||||
morphTriangle(result_image, image, sp[tri], dp[tri])
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue