mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-21 05:53:24 -07:00
Added new face type : head
Now you can replace the head. Example: https://www.youtube.com/watch?v=xr5FHd0AdlQ Requirements: Post processing skill in Adobe After Effects or Davinci Resolve. Usage: 1) Find suitable dst footage with the monotonous background behind head 2) Use “extract head” script 3) Gather rich src headset from only one scene (same color and haircut) 4) Mask whole head for src and dst using XSeg editor 5) Train XSeg 6) Apply trained XSeg mask for src and dst headsets 7) Train SAEHD using ‘head’ face_type as regular deepfake model with DF archi. You can use pretrained model for head. Minimum recommended resolution for head is 224. 8) Extract multiple tracks, using Merger: a. Raw-rgb b. XSeg-prd mask c. XSeg-dst mask 9) Using AAE or DavinciResolve, do: a. Hide source head using XSeg-prd mask: content-aware-fill, clone-stamp, background retraction, or other technique b. Overlay new head using XSeg-dst mask Warning: Head faceset can be used for whole_face or less types of training only with XSeg masking. XSegEditor: added button ‘view trained XSeg mask’, so you can see which frames should be masked to improve mask quality.
This commit is contained in:
parent
383d4d3736
commit
2b7364005d
21 changed files with 506 additions and 413 deletions
|
@ -84,14 +84,19 @@ class InteractiveMergerSubprocessor(Subprocessor):
|
|||
filepath = frame_info.filepath
|
||||
|
||||
if len(frame_info.landmarks_list) == 0:
|
||||
self.log_info (f'no faces found for {filepath.name}, copying without faces')
|
||||
|
||||
img_bgr = cv2_imread(filepath)
|
||||
imagelib.normalize_channels(img_bgr, 3)
|
||||
|
||||
if cfg.mode == 'raw-predict':
|
||||
h,w,c = self.predictor_input_shape
|
||||
img_bgr = np.zeros( (h,w,3), dtype=np.uint8)
|
||||
img_mask = np.zeros( (h,w,1), dtype=np.uint8)
|
||||
else:
|
||||
self.log_info (f'no faces found for {filepath.name}, copying without faces')
|
||||
img_bgr = cv2_imread(filepath)
|
||||
imagelib.normalize_channels(img_bgr, 3)
|
||||
h,w,c = img_bgr.shape
|
||||
img_mask = np.zeros( (h,w,1), dtype=img_bgr.dtype)
|
||||
|
||||
cv2_imwrite (pf.output_filepath, img_bgr)
|
||||
h,w,c = img_bgr.shape
|
||||
|
||||
img_mask = np.zeros( (h,w,1), dtype=img_bgr.dtype)
|
||||
cv2_imwrite (pf.output_mask_filepath, img_mask)
|
||||
|
||||
if pf.need_return_image:
|
||||
|
@ -300,6 +305,7 @@ class InteractiveMergerSubprocessor(Subprocessor):
|
|||
'3' : lambda cfg,shift_pressed: cfg.set_mode(3),
|
||||
'4' : lambda cfg,shift_pressed: cfg.set_mode(4),
|
||||
'5' : lambda cfg,shift_pressed: cfg.set_mode(5),
|
||||
'6' : lambda cfg,shift_pressed: cfg.set_mode(6),
|
||||
'q' : lambda cfg,shift_pressed: cfg.add_hist_match_threshold(1 if not shift_pressed else 5),
|
||||
'a' : lambda cfg,shift_pressed: cfg.add_hist_match_threshold(-1 if not shift_pressed else -5),
|
||||
'w' : lambda cfg,shift_pressed: cfg.add_erode_mask_modifier(1 if not shift_pressed else 5),
|
||||
|
|
|
@ -17,8 +17,6 @@ def MergeMaskedFace (predictor_func, predictor_input_shape,
|
|||
img_size = img_bgr.shape[1], img_bgr.shape[0]
|
||||
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
|
||||
|
||||
if cfg.mode == 'original':
|
||||
return img_bgr, img_face_mask_a
|
||||
|
||||
out_img = img_bgr.copy()
|
||||
out_merging_mask_a = None
|
||||
|
@ -45,17 +43,10 @@ def MergeMaskedFace (predictor_func, predictor_input_shape,
|
|||
|
||||
predictor_input_bgr = cv2.resize (dst_face_bgr, (input_size,input_size) )
|
||||
|
||||
predicted = predictor_func (predictor_input_bgr)
|
||||
if isinstance(predicted, tuple):
|
||||
#merger return bgr,mask
|
||||
prd_face_bgr = np.clip (predicted[0], 0, 1.0)
|
||||
prd_face_mask_a_0 = np.clip (predicted[1], 0, 1.0)
|
||||
predictor_masked = True
|
||||
else:
|
||||
#merger return bgr only, using dst mask
|
||||
prd_face_bgr = np.clip (predicted, 0, 1.0 )
|
||||
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (input_size,input_size) )
|
||||
predictor_masked = False
|
||||
predicted = predictor_func (predictor_input_bgr)
|
||||
prd_face_bgr = np.clip (predicted[0], 0, 1.0)
|
||||
prd_face_mask_a_0 = np.clip (predicted[1], 0, 1.0)
|
||||
prd_face_dst_mask_a_0 = np.clip (predicted[2], 0, 1.0)
|
||||
|
||||
if cfg.super_resolution_power != 0:
|
||||
prd_face_bgr_enhanced = face_enhancer_func(prd_face_bgr, is_tanh=True, preserve_size=False)
|
||||
|
@ -64,89 +55,100 @@ def MergeMaskedFace (predictor_func, predictor_input_shape,
|
|||
prd_face_bgr = np.clip(prd_face_bgr, 0, 1)
|
||||
|
||||
if cfg.super_resolution_power != 0:
|
||||
if predictor_masked:
|
||||
prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
|
||||
else:
|
||||
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
|
||||
prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
|
||||
prd_face_dst_mask_a_0 = cv2.resize (prd_face_dst_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
|
||||
|
||||
if cfg.mask_mode == 2: #dst
|
||||
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
elif cfg.mask_mode >= 3 and cfg.mask_mode <= 6: #XSeg modes
|
||||
if cfg.mask_mode == 3 or cfg.mask_mode == 5 or cfg.mask_mode == 6:
|
||||
if cfg.mask_mode == 1: #dst
|
||||
wrk_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
elif cfg.mask_mode == 2: #learned-prd
|
||||
wrk_face_mask_a_0 = prd_face_mask_a_0
|
||||
elif cfg.mask_mode == 3: #learned-dst
|
||||
wrk_face_mask_a_0 = prd_face_dst_mask_a_0
|
||||
elif cfg.mask_mode == 4: #learned-prd*learned-dst
|
||||
wrk_face_mask_a_0 = prd_face_mask_a_0*prd_face_dst_mask_a_0
|
||||
elif cfg.mask_mode >= 5 and cfg.mask_mode <= 8: #XSeg modes
|
||||
if cfg.mask_mode == 5 or cfg.mask_mode == 7 or cfg.mask_mode == 8:
|
||||
# obtain XSeg-prd
|
||||
prd_face_xseg_bgr = cv2.resize (prd_face_bgr, (xseg_input_size,)*2, cv2.INTER_CUBIC)
|
||||
prd_face_xseg_mask = xseg_256_extract_func(prd_face_xseg_bgr)
|
||||
X_prd_face_mask_a_0 = cv2.resize ( prd_face_xseg_mask, (output_size, output_size), cv2.INTER_CUBIC)
|
||||
|
||||
if cfg.mask_mode >= 4 and cfg.mask_mode <= 6:
|
||||
if cfg.mask_mode >= 6 and cfg.mask_mode <= 8:
|
||||
# obtain XSeg-dst
|
||||
xseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, xseg_input_size, face_type=cfg.face_type)
|
||||
dst_face_xseg_bgr = cv2.warpAffine(img_bgr, xseg_mat, (xseg_input_size,)*2, flags=cv2.INTER_CUBIC )
|
||||
dst_face_xseg_mask = xseg_256_extract_func(dst_face_xseg_bgr)
|
||||
X_dst_face_mask_a_0 = cv2.resize (dst_face_xseg_mask, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
|
||||
if cfg.mask_mode == 3: #'XSeg-prd',
|
||||
prd_face_mask_a_0 = X_prd_face_mask_a_0
|
||||
elif cfg.mask_mode == 4: #'XSeg-dst',
|
||||
prd_face_mask_a_0 = X_dst_face_mask_a_0
|
||||
elif cfg.mask_mode == 5: #'XSeg-prd*XSeg-dst',
|
||||
prd_face_mask_a_0 = X_prd_face_mask_a_0 * X_dst_face_mask_a_0
|
||||
elif cfg.mask_mode == 6: #learned*XSeg-prd*XSeg-dst'
|
||||
prd_face_mask_a_0 = prd_face_mask_a_0 * X_prd_face_mask_a_0 * X_dst_face_mask_a_0
|
||||
if cfg.mask_mode == 5: #'XSeg-prd'
|
||||
wrk_face_mask_a_0 = X_prd_face_mask_a_0
|
||||
elif cfg.mask_mode == 6: #'XSeg-dst'
|
||||
wrk_face_mask_a_0 = X_dst_face_mask_a_0
|
||||
elif cfg.mask_mode == 7: #'XSeg-prd*XSeg-dst'
|
||||
wrk_face_mask_a_0 = X_prd_face_mask_a_0 * X_dst_face_mask_a_0
|
||||
elif cfg.mask_mode == 8: #learned-prd*learned-dst*XSeg-prd*XSeg-dst
|
||||
wrk_face_mask_a_0 = prd_face_mask_a_0 * prd_face_dst_mask_a_0 * X_prd_face_mask_a_0 * X_dst_face_mask_a_0
|
||||
|
||||
prd_face_mask_a_0[ prd_face_mask_a_0 < (1.0/255.0) ] = 0.0 # get rid of noise
|
||||
wrk_face_mask_a_0[ wrk_face_mask_a_0 < (1.0/255.0) ] = 0.0 # get rid of noise
|
||||
|
||||
# resize to mask_subres_size
|
||||
if prd_face_mask_a_0.shape[0] != mask_subres_size:
|
||||
prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (mask_subres_size, mask_subres_size), cv2.INTER_CUBIC)
|
||||
if wrk_face_mask_a_0.shape[0] != mask_subres_size:
|
||||
wrk_face_mask_a_0 = cv2.resize (wrk_face_mask_a_0, (mask_subres_size, mask_subres_size), cv2.INTER_CUBIC)
|
||||
|
||||
# process mask in local predicted space
|
||||
if 'raw' not in cfg.mode:
|
||||
# add zero pad
|
||||
prd_face_mask_a_0 = np.pad (prd_face_mask_a_0, input_size)
|
||||
wrk_face_mask_a_0 = np.pad (wrk_face_mask_a_0, input_size)
|
||||
|
||||
ero = cfg.erode_mask_modifier
|
||||
blur = cfg.blur_mask_modifier
|
||||
|
||||
if ero > 0:
|
||||
prd_face_mask_a_0 = cv2.erode(prd_face_mask_a_0, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
|
||||
wrk_face_mask_a_0 = cv2.erode(wrk_face_mask_a_0, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
|
||||
elif ero < 0:
|
||||
prd_face_mask_a_0 = cv2.dilate(prd_face_mask_a_0, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
|
||||
wrk_face_mask_a_0 = cv2.dilate(wrk_face_mask_a_0, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
|
||||
|
||||
# clip eroded/dilated mask in actual predict area
|
||||
# pad with half blur size in order to accuratelly fade to zero at the boundary
|
||||
clip_size = input_size + blur // 2
|
||||
|
||||
prd_face_mask_a_0[:clip_size,:] = 0
|
||||
prd_face_mask_a_0[-clip_size:,:] = 0
|
||||
prd_face_mask_a_0[:,:clip_size] = 0
|
||||
prd_face_mask_a_0[:,-clip_size:] = 0
|
||||
wrk_face_mask_a_0[:clip_size,:] = 0
|
||||
wrk_face_mask_a_0[-clip_size:,:] = 0
|
||||
wrk_face_mask_a_0[:,:clip_size] = 0
|
||||
wrk_face_mask_a_0[:,-clip_size:] = 0
|
||||
|
||||
if blur > 0:
|
||||
blur = blur + (1-blur % 2)
|
||||
prd_face_mask_a_0 = cv2.GaussianBlur(prd_face_mask_a_0, (blur, blur) , 0)
|
||||
wrk_face_mask_a_0 = cv2.GaussianBlur(wrk_face_mask_a_0, (blur, blur) , 0)
|
||||
|
||||
prd_face_mask_a_0 = prd_face_mask_a_0[input_size:-input_size,input_size:-input_size]
|
||||
wrk_face_mask_a_0 = wrk_face_mask_a_0[input_size:-input_size,input_size:-input_size]
|
||||
|
||||
prd_face_mask_a_0 = np.clip(prd_face_mask_a_0, 0, 1)
|
||||
wrk_face_mask_a_0 = np.clip(wrk_face_mask_a_0, 0, 1)
|
||||
|
||||
img_face_mask_a = cv2.warpAffine( prd_face_mask_a_0, face_mask_output_mat, img_size, np.zeros(img_bgr.shape[0:2], dtype=np.float32), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )[...,None]
|
||||
img_face_mask_a = cv2.warpAffine( wrk_face_mask_a_0, face_mask_output_mat, img_size, np.zeros(img_bgr.shape[0:2], dtype=np.float32), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )[...,None]
|
||||
img_face_mask_a = np.clip (img_face_mask_a, 0.0, 1.0)
|
||||
|
||||
img_face_mask_a [ img_face_mask_a < (1.0/255.0) ] = 0.0 # get rid of noise
|
||||
|
||||
if prd_face_mask_a_0.shape[0] != output_size:
|
||||
prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
if wrk_face_mask_a_0.shape[0] != output_size:
|
||||
wrk_face_mask_a_0 = cv2.resize (wrk_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
|
||||
prd_face_mask_a = prd_face_mask_a_0[...,None]
|
||||
prd_face_mask_area_a = prd_face_mask_a.copy()
|
||||
prd_face_mask_area_a[prd_face_mask_area_a>0] = 1.0
|
||||
wrk_face_mask_a = wrk_face_mask_a_0[...,None]
|
||||
wrk_face_mask_area_a = wrk_face_mask_a.copy()
|
||||
wrk_face_mask_area_a[wrk_face_mask_area_a>0] = 1.0
|
||||
|
||||
if 'raw' in cfg.mode:
|
||||
if cfg.mode == 'original':
|
||||
return img_bgr, img_face_mask_a
|
||||
|
||||
elif 'raw' in cfg.mode:
|
||||
if cfg.mode == 'raw-rgb':
|
||||
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
||||
out_merging_mask_a = img_face_mask_a
|
||||
|
||||
|
||||
elif cfg.mode == 'raw-predict':
|
||||
out_img = prd_face_bgr
|
||||
out_merging_mask_a = wrk_face_mask_a
|
||||
|
||||
out_img = np.clip (out_img, 0.0, 1.0 )
|
||||
else:
|
||||
#averaging [lenx, leny, maskx, masky] by grayscale gradients of upscaled mask
|
||||
|
@ -165,8 +167,8 @@ def MergeMaskedFace (predictor_func, predictor_input_shape,
|
|||
|
||||
if 'seamless' not in cfg.mode and cfg.color_transfer_mode != 0:
|
||||
if cfg.color_transfer_mode == 1: #rct
|
||||
prd_face_bgr = imagelib.reinhard_color_transfer ( np.clip( prd_face_bgr*prd_face_mask_area_a*255, 0, 255).astype(np.uint8),
|
||||
np.clip( dst_face_bgr*prd_face_mask_area_a*255, 0, 255).astype(np.uint8), )
|
||||
prd_face_bgr = imagelib.reinhard_color_transfer ( np.clip( prd_face_bgr*wrk_face_mask_area_a*255, 0, 255).astype(np.uint8),
|
||||
np.clip( dst_face_bgr*wrk_face_mask_area_a*255, 0, 255).astype(np.uint8), )
|
||||
|
||||
prd_face_bgr = np.clip( prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
|
||||
elif cfg.color_transfer_mode == 2: #lct
|
||||
|
@ -174,22 +176,22 @@ def MergeMaskedFace (predictor_func, predictor_input_shape,
|
|||
elif cfg.color_transfer_mode == 3: #mkl
|
||||
prd_face_bgr = imagelib.color_transfer_mkl (prd_face_bgr, dst_face_bgr)
|
||||
elif cfg.color_transfer_mode == 4: #mkl-m
|
||||
prd_face_bgr = imagelib.color_transfer_mkl (prd_face_bgr*prd_face_mask_area_a, dst_face_bgr*prd_face_mask_area_a)
|
||||
prd_face_bgr = imagelib.color_transfer_mkl (prd_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
|
||||
elif cfg.color_transfer_mode == 5: #idt
|
||||
prd_face_bgr = imagelib.color_transfer_idt (prd_face_bgr, dst_face_bgr)
|
||||
elif cfg.color_transfer_mode == 6: #idt-m
|
||||
prd_face_bgr = imagelib.color_transfer_idt (prd_face_bgr*prd_face_mask_area_a, dst_face_bgr*prd_face_mask_area_a)
|
||||
prd_face_bgr = imagelib.color_transfer_idt (prd_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
|
||||
elif cfg.color_transfer_mode == 7: #sot-m
|
||||
prd_face_bgr = imagelib.color_transfer_sot (prd_face_bgr*prd_face_mask_area_a, dst_face_bgr*prd_face_mask_area_a)
|
||||
prd_face_bgr = imagelib.color_transfer_sot (prd_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
|
||||
prd_face_bgr = np.clip (prd_face_bgr, 0.0, 1.0)
|
||||
elif cfg.color_transfer_mode == 8: #mix-m
|
||||
prd_face_bgr = imagelib.color_transfer_mix (prd_face_bgr*prd_face_mask_area_a, dst_face_bgr*prd_face_mask_area_a)
|
||||
prd_face_bgr = imagelib.color_transfer_mix (prd_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
|
||||
|
||||
if cfg.mode == 'hist-match':
|
||||
hist_mask_a = np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
|
||||
|
||||
if cfg.masked_hist_match:
|
||||
hist_mask_a *= prd_face_mask_area_a
|
||||
hist_mask_a *= wrk_face_mask_area_a
|
||||
|
||||
white = (1.0-hist_mask_a)* np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
|
||||
|
||||
|
@ -240,24 +242,24 @@ def MergeMaskedFace (predictor_func, predictor_input_shape,
|
|||
|
||||
if 'seamless' in cfg.mode and cfg.color_transfer_mode != 0:
|
||||
if cfg.color_transfer_mode == 1:
|
||||
out_face_bgr = imagelib.reinhard_color_transfer ( np.clip(out_face_bgr*prd_face_mask_area_a*255, 0, 255).astype(np.uint8),
|
||||
np.clip(dst_face_bgr*prd_face_mask_area_a*255, 0, 255).astype(np.uint8) )
|
||||
out_face_bgr = imagelib.reinhard_color_transfer ( np.clip(out_face_bgr*wrk_face_mask_area_a*255, 0, 255).astype(np.uint8),
|
||||
np.clip(dst_face_bgr*wrk_face_mask_area_a*255, 0, 255).astype(np.uint8) )
|
||||
out_face_bgr = np.clip( out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
|
||||
elif cfg.color_transfer_mode == 2: #lct
|
||||
out_face_bgr = imagelib.linear_color_transfer (out_face_bgr, dst_face_bgr)
|
||||
elif cfg.color_transfer_mode == 3: #mkl
|
||||
out_face_bgr = imagelib.color_transfer_mkl (out_face_bgr, dst_face_bgr)
|
||||
elif cfg.color_transfer_mode == 4: #mkl-m
|
||||
out_face_bgr = imagelib.color_transfer_mkl (out_face_bgr*prd_face_mask_area_a, dst_face_bgr*prd_face_mask_area_a)
|
||||
out_face_bgr = imagelib.color_transfer_mkl (out_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
|
||||
elif cfg.color_transfer_mode == 5: #idt
|
||||
out_face_bgr = imagelib.color_transfer_idt (out_face_bgr, dst_face_bgr)
|
||||
elif cfg.color_transfer_mode == 6: #idt-m
|
||||
out_face_bgr = imagelib.color_transfer_idt (out_face_bgr*prd_face_mask_area_a, dst_face_bgr*prd_face_mask_area_a)
|
||||
out_face_bgr = imagelib.color_transfer_idt (out_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
|
||||
elif cfg.color_transfer_mode == 7: #sot-m
|
||||
out_face_bgr = imagelib.color_transfer_sot (out_face_bgr*prd_face_mask_area_a, dst_face_bgr*prd_face_mask_area_a)
|
||||
out_face_bgr = imagelib.color_transfer_sot (out_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
|
||||
out_face_bgr = np.clip (out_face_bgr, 0.0, 1.0)
|
||||
elif cfg.color_transfer_mode == 8: #mix-m
|
||||
out_face_bgr = imagelib.color_transfer_mix (out_face_bgr*prd_face_mask_area_a, dst_face_bgr*prd_face_mask_area_a)
|
||||
out_face_bgr = imagelib.color_transfer_mix (out_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
|
||||
|
||||
if cfg.mode == 'seamless-hist-match':
|
||||
out_face_bgr = imagelib.color_hist_match(out_face_bgr, dst_face_bgr, cfg.hist_match_threshold)
|
||||
|
|
|
@ -76,21 +76,21 @@ mode_dict = {0:'original',
|
|||
2:'hist-match',
|
||||
3:'seamless',
|
||||
4:'seamless-hist-match',
|
||||
5:'raw-rgb',}
|
||||
5:'raw-rgb',
|
||||
6:'raw-predict'}
|
||||
|
||||
mode_str_dict = {}
|
||||
mode_str_dict = { mode_dict[key] : key for key in mode_dict.keys() }
|
||||
|
||||
for key in mode_dict.keys():
|
||||
mode_str_dict[ mode_dict[key] ] = key
|
||||
|
||||
mask_mode_dict = {1:'learned',
|
||||
2:'dst',
|
||||
3:'XSeg-prd',
|
||||
4:'XSeg-dst',
|
||||
5:'XSeg-prd*XSeg-dst',
|
||||
6:'learned*XSeg-prd*XSeg-dst'
|
||||
mask_mode_dict = {1:'dst',
|
||||
2:'learned-prd',
|
||||
3:'learned-dst',
|
||||
4:'learned-prd*learned-dst',
|
||||
5:'XSeg-prd',
|
||||
6:'XSeg-dst',
|
||||
7:'XSeg-prd*XSeg-dst',
|
||||
8:'learned-prd*learned-dst*XSeg-prd*XSeg-dst'
|
||||
}
|
||||
|
||||
|
||||
|
||||
ctm_dict = { 0: "None", 1:"rct", 2:"lct", 3:"mkl", 4:"mkl-m", 5:"idt", 6:"idt-m", 7:"sot-m", 8:"mix-m" }
|
||||
ctm_str_dict = {None:0, "rct":1, "lct":2, "mkl":3, "mkl-m":4, "idt":5, "idt-m":6, "sot-m":7, "mix-m":8 }
|
||||
|
@ -102,7 +102,7 @@ class MergerConfigMasked(MergerConfig):
|
|||
mode='overlay',
|
||||
masked_hist_match=True,
|
||||
hist_match_threshold = 238,
|
||||
mask_mode = 1,
|
||||
mask_mode = 4,
|
||||
erode_mask_modifier = 0,
|
||||
blur_mask_modifier = 0,
|
||||
motion_blur_power = 0,
|
||||
|
@ -118,7 +118,7 @@ class MergerConfigMasked(MergerConfig):
|
|||
super().__init__(type=MergerConfig.TYPE_MASKED, **kwargs)
|
||||
|
||||
self.face_type = face_type
|
||||
if self.face_type not in [FaceType.HALF, FaceType.MID_FULL, FaceType.FULL, FaceType.WHOLE_FACE ]:
|
||||
if self.face_type not in [FaceType.HALF, FaceType.MID_FULL, FaceType.FULL, FaceType.WHOLE_FACE, FaceType.HEAD ]:
|
||||
raise ValueError("MergerConfigMasked does not support this type of face.")
|
||||
|
||||
self.default_mode = default_mode
|
||||
|
@ -262,9 +262,9 @@ class MergerConfigMasked(MergerConfig):
|
|||
|
||||
if self.mode == 'hist-match' or self.mode == 'seamless-hist-match':
|
||||
r += f"""hist_match_threshold: {self.hist_match_threshold}\n"""
|
||||
|
||||
|
||||
r += f"""mask_mode: { mask_mode_dict[self.mask_mode] }\n"""
|
||||
|
||||
|
||||
if 'raw' not in self.mode:
|
||||
r += (f"""erode_mask_modifier: {self.erode_mask_modifier}\n"""
|
||||
f"""blur_mask_modifier: {self.blur_mask_modifier}\n"""
|
||||
|
@ -274,8 +274,8 @@ class MergerConfigMasked(MergerConfig):
|
|||
|
||||
if 'raw' not in self.mode:
|
||||
r += f"""color_transfer_mode: {ctm_dict[self.color_transfer_mode]}\n"""
|
||||
r += super().to_string(filename)
|
||||
|
||||
r += super().to_string(filename)
|
||||
r += f"""super_resolution_power: {self.super_resolution_power}\n"""
|
||||
|
||||
if 'raw' not in self.mode:
|
||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 307 KiB After Width: | Height: | Size: 310 KiB |
Binary file not shown.
Loading…
Add table
Add a link
Reference in a new issue