mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-14 00:53:48 -07:00
-
This commit is contained in:
parent
daebe10ca7
commit
281787ac3e
1 changed files with 78 additions and 24 deletions
102
__dev/test.py
102
__dev/test.py
|
@ -250,25 +250,25 @@ def umeyama(src, dst, estimate_scale):
|
|||
|
||||
return T
|
||||
|
||||
mean_face_x = np.array([
|
||||
0.000213256, 0.0752622, 0.18113, 0.29077, 0.393397, 0.586856, 0.689483, 0.799124,
|
||||
0.904991, 0.98004, 0.490127, 0.490127, 0.490127, 0.490127, 0.36688, 0.426036,
|
||||
0.490127, 0.554217, 0.613373, 0.121737, 0.187122, 0.265825, 0.334606, 0.260918,
|
||||
0.182743, 0.645647, 0.714428, 0.793132, 0.858516, 0.79751, 0.719335, 0.254149,
|
||||
0.340985, 0.428858, 0.490127, 0.551395, 0.639268, 0.726104, 0.642159, 0.556721,
|
||||
0.490127, 0.423532, 0.338094, 0.290379, 0.428096, 0.490127, 0.552157, 0.689874,
|
||||
0.553364, 0.490127, 0.42689 ])
|
||||
|
||||
mean_face_y = np.array([
|
||||
0.106454, 0.038915, 0.0187482, 0.0344891, 0.0773906, 0.0773906, 0.0344891,
|
||||
0.0187482, 0.038915, 0.106454, 0.203352, 0.307009, 0.409805, 0.515625, 0.587326,
|
||||
0.609345, 0.628106, 0.609345, 0.587326, 0.216423, 0.178758, 0.179852, 0.231733,
|
||||
0.245099, 0.244077, 0.231733, 0.179852, 0.178758, 0.216423, 0.244077, 0.245099,
|
||||
0.780233, 0.745405, 0.727388, 0.742578, 0.727388, 0.745405, 0.780233, 0.864805,
|
||||
0.902192, 0.909281, 0.902192, 0.864805, 0.784792, 0.778746, 0.785343, 0.778746,
|
||||
0.784792, 0.824182, 0.831803, 0.824182 ])
|
||||
|
||||
landmarks_2D = np.stack( [ mean_face_x, mean_face_y ], axis=1 )
|
||||
#mean_face_x = np.array([
|
||||
#0.000213256, 0.0752622, 0.18113, 0.29077, 0.393397, 0.586856, 0.689483, 0.799124,
|
||||
#0.904991, 0.98004, 0.490127, 0.490127, 0.490127, 0.490127, 0.36688, 0.426036,
|
||||
#0.490127, 0.554217, 0.613373, 0.121737, 0.187122, 0.265825, 0.334606, 0.260918,
|
||||
#0.182743, 0.645647, 0.714428, 0.793132, 0.858516, 0.79751, 0.719335, 0.254149,
|
||||
#0.340985, 0.428858, 0.490127, 0.551395, 0.639268, 0.726104, 0.642159, 0.556721,
|
||||
#0.490127, 0.423532, 0.338094, 0.290379, 0.428096, 0.490127, 0.552157, 0.689874,
|
||||
#0.553364, 0.490127, 0.42689 ])
|
||||
#
|
||||
#mean_face_y = np.array([
|
||||
#0.106454, 0.038915, 0.0187482, 0.0344891, 0.0773906, 0.0773906, 0.0344891,
|
||||
#0.0187482, 0.038915, 0.106454, 0.203352, 0.307009, 0.409805, 0.515625, 0.587326,
|
||||
#0.609345, 0.628106, 0.609345, 0.587326, 0.216423, 0.178758, 0.179852, 0.231733,
|
||||
#0.245099, 0.244077, 0.231733, 0.179852, 0.178758, 0.216423, 0.244077, 0.245099,
|
||||
#0.780233, 0.745405, 0.727388, 0.742578, 0.727388, 0.745405, 0.780233, 0.864805,
|
||||
#0.902192, 0.909281, 0.902192, 0.864805, 0.784792, 0.778746, 0.785343, 0.778746,
|
||||
#0.784792, 0.824182, 0.831803, 0.824182 ])
|
||||
#
|
||||
#landmarks_2D = np.stack( [ mean_face_x, mean_face_y ], axis=1 )
|
||||
|
||||
def get_transform_mat (image_landmarks, output_size, scale=1.0):
|
||||
if not isinstance(image_landmarks, np.ndarray):
|
||||
|
@ -306,11 +306,7 @@ def get_transform_mat (image_landmarks, output_size, scale=1.0):
|
|||
import mathlib
|
||||
def main():
|
||||
|
||||
def f ( *args, asd=True, **kwargs ):
|
||||
import code
|
||||
code.interact(local=dict(globals(), **locals()))
|
||||
|
||||
f( 1, asd=True, bg=0)
|
||||
|
||||
|
||||
from nnlib import nnlib
|
||||
exec( nnlib.import_all( device_config=nnlib.device.Config() ), locals(), globals() )
|
||||
|
@ -1357,6 +1353,64 @@ O[i0, i1, i2, i3: (1 + 1 - 1)/1, (64 + 1 - 1)/1, (64 + 2 - 1)/2, (1 + 1 - 1)/1]
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
#import os
|
||||
#os.environ["KERAS_BACKEND"] = "plaidml.keras.backend"
|
||||
#os.environ["PLAIDML_DEVICE_IDS"] = "opencl_nvidia_geforce_gtx_1060_6gb.0"
|
||||
#import keras
|
||||
#import numpy as np
|
||||
#import cv2
|
||||
#import time
|
||||
#K = keras.backend
|
||||
#
|
||||
#
|
||||
#
|
||||
#PNet_Input = keras.layers.Input ( (None, None,3) )
|
||||
#x = PNet_Input
|
||||
#x = keras.layers.Conv2D (10, kernel_size=(3,3), strides=(1,1), padding='valid', name="conv1")(x)
|
||||
#x = keras.layers.PReLU (shared_axes=[1,2], name="PReLU1" )(x)
|
||||
#x = keras.layers.MaxPooling2D( pool_size=(2,2), strides=(2,2), padding='same' ) (x)
|
||||
#x = keras.layers.Conv2D (16, kernel_size=(3,3), strides=(1,1), padding='valid', name="conv2")(x)
|
||||
#x = keras.layers.PReLU (shared_axes=[1,2], name="PReLU2" )(x)
|
||||
#x = keras.layers.Conv2D (32, kernel_size=(3,3), strides=(1,1), padding='valid', name="conv3")(x)
|
||||
#x = keras.layers.PReLU (shared_axes=[1,2], name="PReLU3" )(x)
|
||||
#prob = keras.layers.Conv2D (2, kernel_size=(1,1), strides=(1,1), padding='valid', name="conv41")(x)
|
||||
#x = keras.layers.Conv2D (4, kernel_size=(1,1), strides=(1,1), padding='valid', name="conv42")(x)
|
||||
#
|
||||
#pnet = K.function ([PNet_Input], [x,prob] )
|
||||
#
|
||||
#img = np.random.uniform ( size=(1920,1920,3) )
|
||||
#minsize=80
|
||||
#factor=0.95
|
||||
#factor_count=0
|
||||
#h=img.shape[0]
|
||||
#w=img.shape[1]
|
||||
#
|
||||
#minl=np.amin([h, w])
|
||||
#m=12.0/minsize
|
||||
#minl=minl*m
|
||||
## create scale pyramid
|
||||
#scales=[]
|
||||
#while minl>=12:
|
||||
# scales += [m*np.power(factor, factor_count)]
|
||||
# minl = minl*factor
|
||||
# factor_count += 1
|
||||
# # first stage
|
||||
# for scale in scales:
|
||||
# hs=int(np.ceil(h*scale))
|
||||
# ws=int(np.ceil(w*scale))
|
||||
# im_data = cv2.resize(img, (ws, hs), interpolation=cv2.INTER_LINEAR)
|
||||
# im_data = (im_data-127.5)*0.0078125
|
||||
# img_x = np.expand_dims(im_data, 0)
|
||||
# img_x = np.transpose(img_x, (0,2,1,3))
|
||||
# t = time.time()
|
||||
# out = pnet([img_x])
|
||||
# t = time.time() - t
|
||||
# print (img_x.shape, t)
|
||||
#
|
||||
#import code
|
||||
#code.interact(local=dict(globals(), **locals()))
|
||||
|
||||
#os.environ["KERAS_BACKEND"] = "plaidml.keras.backend"
|
||||
#os.environ["PLAIDML_DEVICE_IDS"] = "opencl_nvidia_geforce_gtx_1060_6gb.0"
|
||||
#import keras
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue