mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-14 10:46:59 -07:00
optimized sample generator
This commit is contained in:
parent
b5c234dac3
commit
21b25038ac
6 changed files with 201 additions and 160 deletions
|
@ -7,8 +7,8 @@ import numpy as np
|
|||
from facelib import LandmarksProcessor
|
||||
from samplelib import (SampleGeneratorBase, SampleHost, SampleProcessor,
|
||||
SampleType)
|
||||
from utils import iter_utils
|
||||
from utils import mp_utils
|
||||
from utils import iter_utils, mp_utils
|
||||
|
||||
|
||||
'''
|
||||
arg
|
||||
|
@ -30,8 +30,13 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
self.output_sample_types = output_sample_types
|
||||
self.add_sample_idx = add_sample_idx
|
||||
|
||||
samples_host = SampleHost.mp_host (SampleType.FACE, self.samples_path)
|
||||
self.samples_len = len(samples_host.get_list())
|
||||
if self.debug:
|
||||
self.generators_count = 1
|
||||
else:
|
||||
self.generators_count = np.clip(multiprocessing.cpu_count(), 2, 6)
|
||||
|
||||
samples_clis = SampleHost.host (SampleType.FACE, self.samples_path, number_of_clis=self.generators_count)
|
||||
self.samples_len = len(samples_clis[0])
|
||||
|
||||
if self.samples_len == 0:
|
||||
raise ValueError('No training data provided.')
|
||||
|
@ -39,18 +44,16 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
index_host = mp_utils.IndexHost(self.samples_len)
|
||||
|
||||
if random_ct_samples_path is not None:
|
||||
ct_samples_host = SampleHost.mp_host (SampleType.FACE, random_ct_samples_path)
|
||||
ct_index_host = mp_utils.IndexHost( len(ct_samples_host.get_list()) )
|
||||
ct_samples_clis = SampleHost.host (SampleType.FACE, random_ct_samples_path, number_of_clis=self.generators_count)
|
||||
ct_index_host = mp_utils.IndexHost( len(ct_samples_clis[0]) )
|
||||
else:
|
||||
ct_samples_host = None
|
||||
ct_samples_clis = None
|
||||
ct_index_host = None
|
||||
|
||||
if self.debug:
|
||||
self.generators_count = 1
|
||||
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, (samples_host.create_cli(), index_host.create_cli(), ct_samples_host.create_cli() if ct_index_host is not None else None, ct_index_host.create_cli() if ct_index_host is not None else None) )]
|
||||
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, (samples_clis[0], index_host.create_cli(), ct_samples_clis[0] if ct_index_host is not None else None, ct_index_host.create_cli() if ct_index_host is not None else None) )]
|
||||
else:
|
||||
self.generators_count = np.clip(multiprocessing.cpu_count(), 2, 4)
|
||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (samples_host.create_cli(), index_host.create_cli(), ct_samples_host.create_cli() if ct_index_host is not None else None, ct_index_host.create_cli() if ct_index_host is not None else None), start_now=True ) for i in range(self.generators_count) ]
|
||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (samples_clis[i], index_host.create_cli(), ct_samples_clis[i] if ct_index_host is not None else None, ct_index_host.create_cli() if ct_index_host is not None else None), start_now=True ) for i in range(self.generators_count) ]
|
||||
|
||||
self.generator_counter = -1
|
||||
|
||||
|
@ -72,13 +75,16 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
while True:
|
||||
batches = None
|
||||
|
||||
indexes = index_host.get(bs)
|
||||
ct_indexes = ct_index_host.get(bs) if ct_samples is not None else None
|
||||
indexes = index_host.multi_get(bs)
|
||||
ct_indexes = ct_index_host.multi_get(bs) if ct_samples is not None else None
|
||||
|
||||
batch_samples = samples.multi_get (indexes)
|
||||
batch_ct_samples = ct_samples.multi_get (ct_indexes) if ct_samples is not None else None
|
||||
|
||||
for n_batch in range(bs):
|
||||
sample_idx = indexes[n_batch]
|
||||
sample = samples[ sample_idx ]
|
||||
ct_sample = ct_samples[ ct_indexes[n_batch] ] if ct_samples is not None else None
|
||||
sample = batch_samples[n_batch]
|
||||
ct_sample = batch_ct_samples[n_batch] if ct_samples is not None else None
|
||||
|
||||
try:
|
||||
x, = SampleProcessor.process ([sample], self.sample_process_options, self.output_sample_types, self.debug, ct_sample=ct_sample)
|
||||
|
|
|
@ -30,6 +30,7 @@ class SampleGeneratorFacePerson(SampleGeneratorBase):
|
|||
self.output_sample_types = output_sample_types
|
||||
self.person_id_mode = person_id_mode
|
||||
|
||||
raise NotImplementedError("Currently SampleGeneratorFacePerson is not implemented.")
|
||||
|
||||
samples_host = SampleHost.mp_host (SampleType.FACE, self.samples_path)
|
||||
samples = samples_host.get_list()
|
||||
|
|
|
@ -20,14 +20,17 @@ class SampleGeneratorFaceTemporal(SampleGeneratorBase):
|
|||
self.sample_process_options = sample_process_options
|
||||
self.output_sample_types = output_sample_types
|
||||
|
||||
self.samples = SampleHost.load (SampleType.FACE_TEMPORAL_SORTED, self.samples_path)
|
||||
|
||||
if self.debug:
|
||||
self.generators_count = 1
|
||||
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, 0 )]
|
||||
else:
|
||||
self.generators_count = min ( generators_count, len(self.samples) )
|
||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, i ) for i in range(self.generators_count) ]
|
||||
self.generators_count = generators_count
|
||||
|
||||
samples_clis = SampleHost.host (SampleType.FACE_TEMPORAL_SORTED, self.samples_path, number_of_clis=self.generators_count)
|
||||
|
||||
if self.debug:
|
||||
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, (0, samples_clis[0]) )]
|
||||
else:
|
||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (i, samples_clis[i]) ) for i in range(self.generators_count) ]
|
||||
|
||||
self.generator_counter = -1
|
||||
|
||||
|
@ -39,8 +42,9 @@ class SampleGeneratorFaceTemporal(SampleGeneratorBase):
|
|||
generator = self.generators[self.generator_counter % len(self.generators) ]
|
||||
return next(generator)
|
||||
|
||||
def batch_func(self, generator_id):
|
||||
samples = self.samples
|
||||
def batch_func(self, param):
|
||||
generator_id, samples = param
|
||||
|
||||
samples_len = len(samples)
|
||||
if samples_len == 0:
|
||||
raise ValueError('No training data provided.')
|
||||
|
@ -56,10 +60,8 @@ class SampleGeneratorFaceTemporal(SampleGeneratorBase):
|
|||
shuffle_idxs = []
|
||||
|
||||
while True:
|
||||
|
||||
batches = None
|
||||
for n_batch in range(self.batch_size):
|
||||
|
||||
if len(shuffle_idxs) == 0:
|
||||
shuffle_idxs = samples_idxs.copy()
|
||||
np.random.shuffle (shuffle_idxs)
|
||||
|
|
|
@ -1,7 +1,5 @@
|
|||
import gc
|
||||
import multiprocessing
|
||||
import operator
|
||||
import pickle
|
||||
import traceback
|
||||
from pathlib import Path
|
||||
|
||||
|
@ -16,9 +14,11 @@ from .Sample import Sample, SampleType
|
|||
|
||||
|
||||
class SampleHost:
|
||||
|
||||
|
||||
|
||||
|
||||
samples_cache = dict()
|
||||
host_cache = dict()
|
||||
|
||||
@staticmethod
|
||||
def get_person_id_max_count(samples_path):
|
||||
samples = None
|
||||
|
@ -35,7 +35,7 @@ class SampleHost:
|
|||
return len(list(persons_name_idxs.keys()))
|
||||
|
||||
@staticmethod
|
||||
def load(sample_type, samples_path):
|
||||
def host(sample_type, samples_path, number_of_clis):
|
||||
samples_cache = SampleHost.samples_cache
|
||||
|
||||
if str(samples_path) not in samples_cache.keys():
|
||||
|
@ -46,9 +46,11 @@ class SampleHost:
|
|||
if sample_type == SampleType.IMAGE:
|
||||
if samples[sample_type] is None:
|
||||
samples[sample_type] = [ Sample(filename=filename) for filename in io.progress_bar_generator( Path_utils.get_image_paths(samples_path), "Loading") ]
|
||||
elif sample_type == SampleType.FACE:
|
||||
if samples[sample_type] is None:
|
||||
result = None
|
||||
elif sample_type == SampleType.FACE or \
|
||||
sample_type == SampleType.FACE_TEMPORAL_SORTED:
|
||||
result = None
|
||||
|
||||
if samples[sample_type] is None:
|
||||
try:
|
||||
result = samplelib.PackedFaceset.load(samples_path)
|
||||
except:
|
||||
|
@ -60,33 +62,26 @@ class SampleHost:
|
|||
if result is None:
|
||||
result = SampleHost.load_face_samples( Path_utils.get_image_paths(samples_path) )
|
||||
|
||||
result_dmp = pickle.dumps(result)
|
||||
del result
|
||||
gc.collect()
|
||||
result = pickle.loads(result_dmp)
|
||||
|
||||
samples[sample_type] = result
|
||||
|
||||
elif sample_type == SampleType.FACE_TEMPORAL_SORTED:
|
||||
if samples[sample_type] is None:
|
||||
samples[sample_type] = SampleHost.upgradeToFaceTemporalSortedSamples( SampleHost.load(SampleType.FACE, samples_path) )
|
||||
samples[sample_type] = mp_utils.ListHost()
|
||||
|
||||
if sample_type == SampleType.FACE_TEMPORAL_SORTED:
|
||||
result = SampleHost.upgradeToFaceTemporalSortedSamples(result)
|
||||
|
||||
list_host = samples[sample_type]
|
||||
|
||||
clis = [ list_host.create_cli() for _ in range(number_of_clis) ]
|
||||
|
||||
if result is not None:
|
||||
while True:
|
||||
if len(result) == 0:
|
||||
break
|
||||
items = result[0:10000]
|
||||
del result[0:10000]
|
||||
clis[0].extend(items)
|
||||
return clis
|
||||
|
||||
return samples[sample_type]
|
||||
|
||||
@staticmethod
|
||||
def mp_host(sample_type, samples_path):
|
||||
result = SampleHost.load (sample_type, samples_path)
|
||||
|
||||
host_cache = SampleHost.host_cache
|
||||
if str(samples_path) not in host_cache.keys():
|
||||
host_cache[str(samples_path)] = [None]*SampleType.QTY
|
||||
hosts = host_cache[str(samples_path)]
|
||||
|
||||
if hosts[sample_type] is None:
|
||||
hosts[sample_type] = mp_utils.ListHost(result)
|
||||
|
||||
return hosts[sample_type]
|
||||
|
||||
@staticmethod
|
||||
def load_face_samples ( image_paths):
|
||||
result = FaceSamplesLoaderSubprocessor(image_paths).run()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue