diff --git a/nnlib/nnlib.py b/nnlib/nnlib.py index 04551f9..6843457 100644 --- a/nnlib/nnlib.py +++ b/nnlib/nnlib.py @@ -514,7 +514,10 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator def Conv2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=RandomNormal(0, 0.02), bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None): return keras.layers.convolutional.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint ) - + + def Conv2DTranspose(filters, kernel_size, strides=(1, 1), padding='valid', output_padding=None, data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None): + return keras.layers.Conv2DTranspose(filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, output_padding=output_padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint) + def func(input): @@ -548,8 +551,8 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator for i in range(n_blocks): x = ResnetBlock(ngf*4)(x) - x = ReLU()(XNormalization(PixelShuffler()(Conv2D(ngf*2 *4, 3, 1, 'same')(x)))) - x = ReLU()(XNormalization(PixelShuffler()(Conv2D(ngf *4, 3, 1, 'same')(x)))) + x = ReLU()(XNormalization(Conv2DTranspose(ngf*2, 3, 2, 'same')(x))) + x = ReLU()(XNormalization(Conv2DTranspose(ngf , 3, 2, 'same')(x))) x = ReflectionPadding2D((3,3))(x) x = Conv2D(output_nc, 7, 1, 'valid')(x)