now you can train models on multiple GPU's on same workspace without cloning any folders.

Model files names will be prefixed with GPU index if GPU choosed explicitly on train/convert start.
if you leave GPU idx choice default, then best GPU idx will be choosed and model file names will not contain index prefix.
It gives you possibility to train same fake with various models or options on multiple GPUs.

H64 and H128: now you can choose 'Lighter autoencoder'. It is same as vram gb <= 4 before this update.

added archived_models.zip contains old experiments

RecycleGAN: archived

devicelib: if your system has no NVML installed (some old cards), then it will work with gpu_idx=0 as 'Generic GeForce GPU' with 2GB vram.

refactorings
This commit is contained in:
iperov 2019-01-14 10:48:23 +04:00
parent e2f4677987
commit 1f2b1481ef
9 changed files with 180 additions and 479 deletions

View file

@ -1,250 +0,0 @@
from models import ModelBase
import numpy as np
import cv2
from mathlib import get_power_of_two
from nnlib import nnlib
from facelib import FaceType
from samples import *
class Model(ModelBase):
GAH5 = 'GA.h5'
PAH5 = 'PA.h5'
DAH5 = 'DA.h5'
GBH5 = 'GB.h5'
DBH5 = 'DB.h5'
PBH5 = 'PB.h5'
#override
def onInitialize(self, batch_size=-1, **in_options):
exec(nnlib.code_import_all, locals(), globals())
created_batch_size = self.get_batch_size()
if self.epoch == 0:
#first run
try:
created_resolution = int ( input ("Resolution (default:64, valid: 64,128,256) : ") )
except:
created_resolution = 64
if created_resolution not in [64,128,256]:
created_resolution = 64
try:
created_batch_size = int ( input ("Batch_size (minimum/default - 10) : ") )
except:
created_batch_size = 10
created_batch_size = max(created_batch_size,1)
print ("Done. If training won't start, decrease resolution")
self.options['created_resolution'] = created_resolution
self.options['created_batch_size'] = created_batch_size
self.created_vram_gb = self.device_config.gpu_total_vram_gb
else:
#not first run
if 'created_batch_size' in self.options.keys():
created_batch_size = self.options['created_batch_size']
else:
raise Exception("Continue training, but created_batch_size not found.")
if 'created_resolution' in self.options.keys():
created_resolution = self.options['created_resolution']
else:
raise Exception("Continue training, but created_resolution not found.")
resolution = created_resolution
bgr_shape = (resolution, resolution, 3)
ngf = 64
npf = 64
ndf = 64
lambda_A = 10
lambda_B = 10
self.set_batch_size(created_batch_size)
use_batch_norm = False #created_batch_size > 1
self.GA = modelify(ResNet (bgr_shape[2], use_batch_norm, n_blocks=6, ngf=ngf, use_dropout=True))(Input(bgr_shape))
self.GB = modelify(ResNet (bgr_shape[2], use_batch_norm, n_blocks=6, ngf=ngf, use_dropout=True))(Input(bgr_shape))
#self.GA = modelify(UNet (bgr_shape[2], use_batch_norm, num_downs=get_power_of_two(resolution)-1, ngf=ngf, use_dropout=True))(Input(bgr_shape))
#self.GB = modelify(UNet (bgr_shape[2], use_batch_norm, num_downs=get_power_of_two(resolution)-1, ngf=ngf, use_dropout=True))(Input(bgr_shape))
self.PA = modelify(UNetTemporalPredictor(bgr_shape[2], use_batch_norm, num_downs=get_power_of_two(resolution)-1, ngf=npf, use_dropout=True))([Input(bgr_shape), Input(bgr_shape)])
self.PB = modelify(UNetTemporalPredictor(bgr_shape[2], use_batch_norm, num_downs=get_power_of_two(resolution)-1, ngf=npf, use_dropout=True))([Input(bgr_shape), Input(bgr_shape)])
self.DA = modelify(NLayerDiscriminator(use_batch_norm, ndf=ndf, n_layers=3) ) (Input(bgr_shape))
self.DB = modelify(NLayerDiscriminator(use_batch_norm, ndf=ndf, n_layers=3) ) (Input(bgr_shape))
if not self.is_first_run():
self.GA.load_weights (self.get_strpath_storage_for_file(self.GAH5))
self.DA.load_weights (self.get_strpath_storage_for_file(self.DAH5))
self.PA.load_weights (self.get_strpath_storage_for_file(self.PAH5))
self.GB.load_weights (self.get_strpath_storage_for_file(self.GBH5))
self.DB.load_weights (self.get_strpath_storage_for_file(self.DBH5))
self.PB.load_weights (self.get_strpath_storage_for_file(self.PBH5))
real_A0 = Input(bgr_shape, name="real_A0")
real_A1 = Input(bgr_shape, name="real_A1")
real_A2 = Input(bgr_shape, name="real_A2")
real_B0 = Input(bgr_shape, name="real_B0")
real_B1 = Input(bgr_shape, name="real_B1")
real_B2 = Input(bgr_shape, name="real_B2")
DA_ones = K.ones ( K.int_shape(self.DA.outputs[0])[1:] )
DA_zeros = K.zeros ( K.int_shape(self.DA.outputs[0])[1:] )
DB_ones = K.ones ( K.int_shape(self.DB.outputs[0])[1:] )
DB_zeros = K.zeros ( K.int_shape(self.DB.outputs[0])[1:] )
def CycleLoss (t1,t2):
return K.mean(K.square(t1 - t2))
def RecurrentLOSS(t1,t2):
return K.mean(K.square(t1 - t2))
def RecycleLOSS(t1,t2):
return K.mean(K.square(t1 - t2))
fake_B0 = self.GA(real_A0)
fake_B1 = self.GA(real_A1)
fake_A0 = self.GB(real_B0)
fake_A1 = self.GB(real_B1)
#rec_FB0 = self.GA(fake_A0)
#rec_FB1 = self.GA(fake_A1)
#rec_FA0 = self.GB(fake_B0)
#rec_FA1 = self.GB(fake_B1)
pred_A2 = self.PA ( [real_A0, real_A1])
pred_B2 = self.PB ( [real_B0, real_B1])
rec_A2 = self.GB ( self.PB ( [fake_B0, fake_B1]) )
rec_B2 = self.GA ( self.PA ( [fake_A0, fake_A1]))
loss_G = K.mean(K.square(self.DB(fake_B0) - DB_ones)) + \
K.mean(K.square(self.DB(fake_B1) - DB_ones)) + \
K.mean(K.square(self.DA(fake_A0) - DA_ones)) + \
K.mean(K.square(self.DA(fake_A1) - DA_ones)) + \
lambda_A * ( #CycleLoss(rec_FA0, real_A0) + \
#CycleLoss(rec_FA1, real_A1) + \
RecurrentLOSS(pred_A2, real_A2) + \
RecycleLOSS(rec_A2, real_A2) ) + \
lambda_B * ( #CycleLoss(rec_FB0, real_B0) + \
#CycleLoss(rec_FB1, real_B1) + \
RecurrentLOSS(pred_B2, real_B2) + \
RecycleLOSS(rec_B2, real_B2) )
weights_G = self.GA.trainable_weights + self.GB.trainable_weights + self.PA.trainable_weights + self.PB.trainable_weights
self.G_train = K.function ([real_A0, real_A1, real_A2, real_B0, real_B1, real_B2],[loss_G],
Adam(lr=2e-4, beta_1=0.5, beta_2=0.999).get_updates(loss_G, weights_G) )
###########
loss_D_A0 = ( K.mean(K.square( self.DA(real_A0) - DA_ones)) + \
K.mean(K.square( self.DA(fake_A0) - DA_zeros)) ) * 0.5
loss_D_A1 = ( K.mean(K.square( self.DA(real_A1) - DA_ones)) + \
K.mean(K.square( self.DA(fake_A1) - DA_zeros)) ) * 0.5
loss_D_A = loss_D_A0 + loss_D_A1
self.DA_train = K.function ([real_A0, real_A1, real_A2, real_B0, real_B1, real_B2],[loss_D_A],
Adam(lr=2e-4, beta_1=0.5, beta_2=0.999).get_updates(loss_D_A, self.DA.trainable_weights) )
############
loss_D_B0 = ( K.mean(K.square( self.DB(real_B0) - DB_ones)) + \
K.mean(K.square( self.DB(fake_B0) - DB_zeros)) ) * 0.5
loss_D_B1 = ( K.mean(K.square( self.DB(real_B1) - DB_ones)) + \
K.mean(K.square( self.DB(fake_B1) - DB_zeros)) ) * 0.5
loss_D_B = loss_D_B0 + loss_D_B1
self.DB_train = K.function ([real_A0, real_A1, real_A2, real_B0, real_B1, real_B2],[loss_D_B],
Adam(lr=2e-4, beta_1=0.5, beta_2=0.999).get_updates(loss_D_B, self.DB.trainable_weights) )
############
self.G_view = K.function([real_A0, real_A1, real_A2, real_B0, real_B1, real_B2],[fake_A0, fake_A1, pred_A2, rec_A2, fake_B0, fake_B1, pred_B2, rec_B2 ])
self.G_convert = K.function([real_B0],[fake_A0])
if self.is_training_mode:
f = SampleProcessor.TypeFlags
self.set_training_data_generators ([
SampleGeneratorImageTemporal(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
temporal_image_count=3,
sample_process_options=SampleProcessor.Options(random_flip = False, normalize_tanh = True),
output_sample_types=[ [f.SOURCE | f.MODE_BGR, resolution] ] ),
SampleGeneratorImageTemporal(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
temporal_image_count=3,
sample_process_options=SampleProcessor.Options(random_flip = False, normalize_tanh = True),
output_sample_types=[ [f.SOURCE | f.MODE_BGR, resolution] ] ),
])
#override
def onSave(self):
self.save_weights_safe( [[self.GA, self.get_strpath_storage_for_file(self.GAH5)],
[self.GB, self.get_strpath_storage_for_file(self.GBH5)],
[self.DA, self.get_strpath_storage_for_file(self.DAH5)],
[self.DB, self.get_strpath_storage_for_file(self.DBH5)],
[self.PA, self.get_strpath_storage_for_file(self.PAH5)],
[self.PB, self.get_strpath_storage_for_file(self.PBH5)] ])
#override
def onTrainOneEpoch(self, sample):
source_src_0, source_src_1, source_src_2, = sample[0]
source_dst_0, source_dst_1, source_dst_2, = sample[1]
feed = [source_src_0, source_src_1, source_src_2, source_dst_0, source_dst_1, source_dst_2]
loss_G, = self.G_train ( feed )
loss_DA, = self.DA_train( feed )
loss_DB, = self.DB_train( feed )
#return ( ('G', loss_G), )
return ( ('G', loss_G), ('DA', loss_DA), ('DB', loss_DB) )
#override
def onGetPreview(self, sample):
test_A0 = sample[0][0]
test_A1 = sample[0][1]
test_A2 = sample[0][2]
test_B0 = sample[1][0]
test_B1 = sample[1][1]
test_B2 = sample[1][2]
G_view_result = self.G_view([test_A0, test_A1, test_A2, test_B0, test_B1, test_B2])
fake_A0, fake_A1, pred_A2, rec_A2, fake_B0, fake_B1, pred_B2, rec_B2 = [ x[0] / 2 + 0.5 for x in G_view_result]
test_A0, test_A1, test_A2, test_B0, test_B1, test_B2 = [ x[0] / 2 + 0.5 for x in [test_A0, test_A1, test_A2, test_B0, test_B1, test_B2] ]
r = np.concatenate ((np.concatenate ( (test_A0, test_A1, test_A2, pred_A2, fake_B0, fake_B1, rec_A2), axis=1),
np.concatenate ( (test_B0, test_B1, test_B2, pred_B2, fake_A0, fake_A1, rec_B2), axis=1)
), axis=0)
return [ ('RecycleGAN, A0-A1-A2-PA2-FB0-FB1-RA2, B0-B1-B2-PB2-FA0-FA1-RB2, ', r ) ]
def predictor_func (self, face):
x = self.G_convert ( [ np.expand_dims(face *2 - 1,0)] )[0]
return x[0] / 2 + 0.5
#override
def get_converter(self, **in_options):
from models import ConverterImage
return ConverterImage(self.predictor_func,
predictor_input_size=self.options['created_resolution'],
output_size=self.options['created_resolution'],
**in_options)