now you can train models on multiple GPU's on same workspace without cloning any folders.

Model files names will be prefixed with GPU index if GPU choosed explicitly on train/convert start.
if you leave GPU idx choice default, then best GPU idx will be choosed and model file names will not contain index prefix.
It gives you possibility to train same fake with various models or options on multiple GPUs.

H64 and H128: now you can choose 'Lighter autoencoder'. It is same as vram gb <= 4 before this update.

added archived_models.zip contains old experiments

RecycleGAN: archived

devicelib: if your system has no NVML installed (some old cards), then it will work with gpu_idx=0 as 'Generic GeForce GPU' with 2GB vram.

refactorings
This commit is contained in:
iperov 2019-01-14 10:48:23 +04:00
parent e2f4677987
commit 1f2b1481ef
9 changed files with 180 additions and 479 deletions

View file

@ -18,7 +18,18 @@ You can implement your own model. Check examples.
class ModelBase(object):
#DONT OVERRIDE
def __init__(self, model_path, training_data_src_path=None, training_data_dst_path=None, debug = False, force_best_gpu_idx=-1, **in_options):
def __init__(self, model_path, training_data_src_path=None, training_data_dst_path=None, debug = False, force_gpu_idx=-1, **in_options):
if force_gpu_idx == -1:
idxs_names_list = nnlib.device.getAllDevicesIdxsWithNamesList()
if len(idxs_names_list) > 1:
print ("You have multi GPUs in a system: ")
for idx, name in idxs_names_list:
print ("[%d] : %s" % (idx, name) )
force_gpu_idx = input_int("Which GPU idx to choose? ( skip: best GPU ) : ", -1, [ x[0] for x in idxs_names_list] )
self.force_gpu_idx = force_gpu_idx
print ("Loading model...")
self.model_path = model_path
self.model_data_path = Path( self.get_strpath_storage_for_file('data.dat') )
@ -35,7 +46,7 @@ class ModelBase(object):
self.debug = debug
self.is_training_mode = (training_data_src_path is not None and training_data_dst_path is not None)
self.supress_std_once = ('TF_SUPPRESS_STD' in os.environ.keys() and os.environ['TF_SUPPRESS_STD'] == '1')
self.supress_std_once = os.environ.get('TF_SUPPRESS_STD', '0') == '1'
self.epoch = 0
self.options = {}
@ -48,21 +59,12 @@ class ModelBase(object):
self.options = model_data['options']
self.loss_history = model_data['loss_history'] if 'loss_history' in model_data.keys() else []
self.sample_for_preview = model_data['sample_for_preview'] if 'sample_for_preview' in model_data.keys() else None
ask_override = self.is_training_mode and self.epoch != 0 and input_in_time ("Press enter in 2 seconds to override some model settings.", 2)
if self.epoch == 0:
print ("\nModel first run. Enter model options as default for each run.")
if (self.epoch == 0 or ask_override) and (force_best_gpu_idx == -1):
idxs_names_list = nnlib.device.getAllDevicesIdxsWithNamesList()
if len(idxs_names_list) > 1:
print ("You have multi GPUs in a system: ")
for idx, name in idxs_names_list:
print ("[%d] : %s" % (idx, name) )
force_best_gpu_idx = input_int("Which GPU idx to choose? ( skip: system choice ) : ", -1)
if self.epoch == 0 or ask_override:
default_write_preview_history = False if self.epoch == 0 else self.options.get('write_preview_history',False)
self.options['write_preview_history'] = input_bool("Write preview history? (y/n ?:help skip:n/default) : ", default_write_preview_history, help_message="Preview history will be writed to <ModelName>_history folder.")
@ -119,13 +121,8 @@ class ModelBase(object):
self.onInitializeOptions(self.epoch == 0, ask_override)
nnlib.import_all ( nnlib.DeviceConfig(allow_growth=False, force_best_gpu_idx=force_best_gpu_idx, **in_options) )
nnlib.import_all ( nnlib.DeviceConfig(allow_growth=False, force_gpu_idx=self.force_gpu_idx, **in_options) )
self.device_config = nnlib.active_DeviceConfig
if self.epoch == 0:
self.created_vram_gb = self.options['created_vram_gb'] = self.device_config.gpu_total_vram_gb
else:
self.created_vram_gb = self.options['created_vram_gb'] = self.options.get('created_vram_gb',self.device_config.gpu_total_vram_gb)
self.onInitialize(**in_options)
@ -136,7 +133,10 @@ class ModelBase(object):
if self.is_training_mode:
if self.write_preview_history:
self.preview_history_path = self.model_path / ( '%s_history' % (self.get_model_name()) )
if self.force_gpu_idx == -1:
self.preview_history_path = self.model_path / ( '%s_history' % (self.get_model_name()) )
else:
self.preview_history_path = self.model_path / ( '%d_%s_history' % (self.force_gpu_idx, self.get_model_name()) )
if not self.preview_history_path.exists():
self.preview_history_path.mkdir(exist_ok=True)
@ -174,7 +174,7 @@ class ModelBase(object):
for idx in self.device_config.gpu_idxs:
print ("== |== [%d : %s]" % (idx, nnlib.device.getDeviceName(idx)) )
if not self.device_config.cpu_only and self.device_config.gpu_total_vram_gb == 2:
if not self.device_config.cpu_only and self.device_config.gpu_vram_gb[0] == 2:
print ("==")
print ("== WARNING: You are using 2GB GPU. Result quality may be significantly decreased.")
print ("== If training does not start, close all programs and try again.")
@ -268,7 +268,7 @@ class ModelBase(object):
if self.supress_std_once:
supressor.__exit__()
model_data = {
'epoch': self.epoch,
'options': self.options,
@ -367,7 +367,10 @@ class ModelBase(object):
return self.generator_list
def get_strpath_storage_for_file(self, filename):
return str( self.model_path / (self.get_model_name() + '_' + filename) )
if self.force_gpu_idx == -1:
return str( self.model_path / ( self.get_model_name() + '_' + filename) )
else:
return str( self.model_path / ( str(self.force_gpu_idx) + '_' + self.get_model_name() + '_' + filename) )
def set_vram_batch_requirements (self, d):
#example d = {2:2,3:4,4:8,5:16,6:32,7:32,8:32,9:48}
@ -379,7 +382,7 @@ class ModelBase(object):
else:
if self.batch_size == 0:
for x in keys:
if self.device_config.gpu_total_vram_gb <= x:
if self.device_config.gpu_vram_gb[0] <= x:
self.batch_size = d[x]
break