mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-08 05:51:40 -07:00
update SampleGeneratorFaceSkinSegDataset
This commit is contained in:
parent
7c89077321
commit
144675020c
1 changed files with 80 additions and 79 deletions
|
@ -8,6 +8,7 @@ import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from core import imagelib, mplib, pathex
|
from core import imagelib, mplib, pathex
|
||||||
|
from core.imagelib import sd
|
||||||
from core.cv2ex import *
|
from core.cv2ex import *
|
||||||
from core.interact import interact as io
|
from core.interact import interact as io
|
||||||
from core.joblib import SubprocessGenerator, ThisThreadGenerator
|
from core.joblib import SubprocessGenerator, ThisThreadGenerator
|
||||||
|
@ -121,8 +122,9 @@ class SampleGeneratorFaceSkinSegDataset(SampleGeneratorBase):
|
||||||
|
|
||||||
samples = pickle.loads(pickled_samples)
|
samples = pickle.loads(pickled_samples)
|
||||||
|
|
||||||
|
obstructions_images_paths_len = len(obstructions_images_paths)
|
||||||
shuffle_o_idxs = []
|
shuffle_o_idxs = []
|
||||||
o_idxs = [*range(len(obstructions_images_paths))]
|
o_idxs = [*range(obstructions_images_paths_len)]
|
||||||
|
|
||||||
shuffle_idxs = []
|
shuffle_idxs = []
|
||||||
idxs = [*range(len(samples))]
|
idxs = [*range(len(samples))]
|
||||||
|
@ -178,6 +180,7 @@ class SampleGeneratorFaceSkinSegDataset(SampleGeneratorBase):
|
||||||
if len(mask.shape) == 2:
|
if len(mask.shape) == 2:
|
||||||
mask = mask[...,None]
|
mask = mask[...,None]
|
||||||
|
|
||||||
|
if obstructions_images_paths_len != 0:
|
||||||
# apply obstruction
|
# apply obstruction
|
||||||
if len(shuffle_o_idxs) == 0:
|
if len(shuffle_o_idxs) == 0:
|
||||||
shuffle_o_idxs = o_idxs.copy()
|
shuffle_o_idxs = o_idxs.copy()
|
||||||
|
@ -241,13 +244,11 @@ class SampleGeneratorFaceSkinSegDataset(SampleGeneratorBase):
|
||||||
mask[mask >= 0.5] = 1.0
|
mask[mask >= 0.5] = 1.0
|
||||||
mask = np.clip(mask, 0, 1)
|
mask = np.clip(mask, 0, 1)
|
||||||
|
|
||||||
img = imagelib.apply_random_hsv_shift(img)
|
|
||||||
|
|
||||||
#todo random mask for blur
|
img = imagelib.apply_random_hsv_shift(img, mask=sd.random_circle_faded ([resolution,resolution]))
|
||||||
|
img = imagelib.apply_random_motion_blur( img, motion_blur_chance, motion_blur_mb_max_size, mask=sd.random_circle_faded ([resolution,resolution]))
|
||||||
img = imagelib.apply_random_motion_blur( img, motion_blur_chance, motion_blur_mb_max_size )
|
img = imagelib.apply_random_gaussian_blur( img, gaussian_blur_chance, gaussian_blur_kernel_max_size, mask=sd.random_circle_faded ([resolution,resolution]))
|
||||||
img = imagelib.apply_random_gaussian_blur( img, gaussian_blur_chance, gaussian_blur_kernel_max_size )
|
img = imagelib.apply_random_bilinear_resize( img, random_bilinear_resize_chance, random_bilinear_resize_max_size_per, mask=sd.random_circle_faded ([resolution,resolution]))
|
||||||
img = imagelib.apply_random_bilinear_resize( img, random_bilinear_resize_chance, random_bilinear_resize_max_size_per )
|
|
||||||
|
|
||||||
if data_format == "NCHW":
|
if data_format == "NCHW":
|
||||||
img = np.transpose(img, (2,0,1) )
|
img = np.transpose(img, (2,0,1) )
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue