diff --git a/models/Model_SAEHD/Model.py b/models/Model_SAEHD/Model.py index 9164b57..24058b1 100644 --- a/models/Model_SAEHD/Model.py +++ b/models/Model_SAEHD/Model.py @@ -175,7 +175,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... 'head' : FaceType.HEAD}[ self.options['face_type'] ] eyes_prio = self.options['eyes_prio'] - + archi_split = self.options['archi'].split('-') if len(archi_split) == 2: @@ -192,6 +192,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... self.set_iter(0) self.gan_power = gan_power = self.options['gan_power'] if not self.pretrain else 0.0 + random_warp = False if self.pretrain else self.options['random_warp'] masked_training = self.options['masked_training'] ct_mode = self.options['ct_mode'] @@ -453,7 +454,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... DLoss(gpu_pred_src_src_d_zeros , gpu_pred_src_src_d) ) * 0.5 + \ (DLoss(gpu_target_src_d2_ones , gpu_target_src_d2) + \ DLoss(gpu_pred_src_src_d2_zeros , gpu_pred_src_src_d2) ) * 0.5 - + gpu_D_src_dst_loss_gvs += [ nn.gradients (gpu_D_src_dst_loss, self.D_src.get_weights() ) ]#+self.D_src_x2.get_weights() gpu_G_loss += gan_power*(DLoss(gpu_pred_src_src_d_ones, gpu_pred_src_src_d) + \ @@ -577,7 +578,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... self.set_training_data_generators ([ SampleGeneratorFace(training_data_src_path, random_ct_samples_path=random_ct_samples_path, debug=self.is_debug(), batch_size=self.get_batch_size(), sample_process_options=SampleProcessor.Options(random_flip=self.random_flip), - output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':self.options['random_warp'], 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, + output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, ], @@ -586,7 +587,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(), sample_process_options=SampleProcessor.Options(random_flip=self.random_flip), - output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':self.options['random_warp'], 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, + output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, ],