First Cioscos commit

-Now the code is at the same point of Iperov's one
-SAEHD can optionally use fp16 (unstable)
-Other loss functions and background power are not available so far
-Some bug fix
This commit is contained in:
Cioscos 2021-09-29 01:41:54 +02:00
commit 0fe22be204
20 changed files with 909 additions and 589 deletions

View file

@ -1,7 +1,137 @@
import numpy as np
import numpy.linalg as npla
import cv2
from core import randomex
def mls_rigid_deformation(vy, vx, p, q, alpha=1.0, eps=1e-8):
""" Rigid deformation
Parameters
----------
vx, vy: ndarray
coordinate grid, generated by np.meshgrid(gridX, gridY)
p: ndarray
an array with size [n, 2], original control points
q: ndarray
an array with size [n, 2], final control points
alpha: float
parameter used by weights
eps: float
epsilon
Return
------
A deformed image.
"""
# Change (x, y) to (row, col)
q = np.ascontiguousarray(q[:, [1, 0]].astype(np.int16))
p = np.ascontiguousarray(p[:, [1, 0]].astype(np.int16))
# Exchange p and q and hence we transform destination pixels to the corresponding source pixels.
p, q = q, p
grow = vx.shape[0] # grid rows
gcol = vx.shape[1] # grid cols
ctrls = p.shape[0] # control points
# Compute
reshaped_p = p.reshape(ctrls, 2, 1, 1) # [ctrls, 2, 1, 1]
reshaped_v = np.vstack((vx.reshape(1, grow, gcol), vy.reshape(1, grow, gcol))) # [2, grow, gcol]
w = 1.0 / (np.sum((reshaped_p - reshaped_v).astype(np.float32) ** 2, axis=1) + eps) ** alpha # [ctrls, grow, gcol]
w /= np.sum(w, axis=0, keepdims=True) # [ctrls, grow, gcol]
pstar = np.zeros((2, grow, gcol), np.float32)
for i in range(ctrls):
pstar += w[i] * reshaped_p[i] # [2, grow, gcol]
vpstar = reshaped_v - pstar # [2, grow, gcol]
reshaped_vpstar = vpstar.reshape(2, 1, grow, gcol) # [2, 1, grow, gcol]
neg_vpstar_verti = vpstar[[1, 0],...] # [2, grow, gcol]
neg_vpstar_verti[1,...] = -neg_vpstar_verti[1,...]
reshaped_neg_vpstar_verti = neg_vpstar_verti.reshape(2, 1, grow, gcol) # [2, 1, grow, gcol]
mul_right = np.concatenate((reshaped_vpstar, reshaped_neg_vpstar_verti), axis=1) # [2, 2, grow, gcol]
reshaped_mul_right = mul_right.reshape(2, 2, grow, gcol) # [2, 2, grow, gcol]
# Calculate q
reshaped_q = q.reshape((ctrls, 2, 1, 1)) # [ctrls, 2, 1, 1]
qstar = np.zeros((2, grow, gcol), np.float32)
for i in range(ctrls):
qstar += w[i] * reshaped_q[i] # [2, grow, gcol]
temp = np.zeros((grow, gcol, 2), np.float32)
for i in range(ctrls):
phat = reshaped_p[i] - pstar # [2, grow, gcol]
reshaped_phat = phat.reshape(1, 2, grow, gcol) # [1, 2, grow, gcol]
reshaped_w = w[i].reshape(1, 1, grow, gcol) # [1, 1, grow, gcol]
neg_phat_verti = phat[[1, 0]] # [2, grow, gcol]
neg_phat_verti[1] = -neg_phat_verti[1]
reshaped_neg_phat_verti = neg_phat_verti.reshape(1, 2, grow, gcol) # [1, 2, grow, gcol]
mul_left = np.concatenate((reshaped_phat, reshaped_neg_phat_verti), axis=0) # [2, 2, grow, gcol]
A = np.matmul((reshaped_w * mul_left).transpose(2, 3, 0, 1),
reshaped_mul_right.transpose(2, 3, 0, 1)) # [grow, gcol, 2, 2]
qhat = reshaped_q[i] - qstar # [2, grow, gcol]
reshaped_qhat = qhat.reshape(1, 2, grow, gcol).transpose(2, 3, 0, 1) # [grow, gcol, 1, 2]
# Get final image transfomer -- 3-D array
temp += np.matmul(reshaped_qhat, A).reshape(grow, gcol, 2) # [grow, gcol, 2]
temp = temp.transpose(2, 0, 1) # [2, grow, gcol]
normed_temp = np.linalg.norm(temp, axis=0, keepdims=True) # [1, grow, gcol]
normed_vpstar = np.linalg.norm(vpstar, axis=0, keepdims=True) # [1, grow, gcol]
nan_mask = normed_temp[0]==0
transformers = np.true_divide(temp, normed_temp, out=np.zeros_like(temp), where= ~nan_mask) * normed_vpstar + qstar
# fix nan values
nan_mask_flat = np.flatnonzero(nan_mask)
nan_mask_anti_flat = np.flatnonzero(~nan_mask)
transformers[0][nan_mask] = np.interp(nan_mask_flat, nan_mask_anti_flat, transformers[0][~nan_mask])
transformers[1][nan_mask] = np.interp(nan_mask_flat, nan_mask_anti_flat, transformers[1][~nan_mask])
return transformers
def gen_pts(W, H, rnd_state=None):
if rnd_state is None:
rnd_state = np.random
min_pts, max_pts = 4, 16
n_pts = rnd_state.randint(min_pts, max_pts)
min_radius_per = 0.00
max_radius_per = 0.10
pts = []
for i in range(max_pts):
while True:
x, y = rnd_state.randint(W), rnd_state.randint(H)
rad = min_radius_per + rnd_state.rand()*(max_radius_per-min_radius_per)
intersect = False
for px,py,prad,_,_ in pts:
dist = npla.norm([x-px, y-py])
if dist <= (rad+prad)*2:
intersect = True
break
if intersect:
continue
angle = rnd_state.rand()*(2*np.pi)
x2 = int(x+np.cos(angle)*W*rad)
y2 = int(y+np.sin(angle)*H*rad)
break
pts.append( (x,y,rad, x2,y2) )
pts1 = np.array( [ [pt[0],pt[1]] for pt in pts ] )
pts2 = np.array( [ [pt[-2],pt[-1]] for pt in pts ] )
return pts1, pts2
def gen_warp_params (w, flip=False, rotation_range=[-2,2], scale_range=[-0.5, 0.5], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05], rnd_state=None ):
if rnd_state is None:
rnd_state = np.random
@ -17,22 +147,29 @@ def gen_warp_params (w, flip=False, rotation_range=[-2,2], scale_range=[-0.5, 0.
ty = rnd_state.uniform( ty_range[0], ty_range[1] )
p_flip = flip and rnd_state.randint(10) < 4
#random warp by grid
#random warp V1
cell_size = [ w // (2**i) for i in range(1,4) ] [ rnd_state.randint(3) ]
cell_count = w // cell_size + 1
grid_points = np.linspace( 0, w, cell_count)
mapx = np.broadcast_to(grid_points, (cell_count, cell_count)).copy()
mapy = mapx.T
mapx[1:-1,1:-1] = mapx[1:-1,1:-1] + randomex.random_normal( size=(cell_count-2, cell_count-2) )*(cell_size*0.24)
mapy[1:-1,1:-1] = mapy[1:-1,1:-1] + randomex.random_normal( size=(cell_count-2, cell_count-2) )*(cell_size*0.24)
half_cell_size = cell_size // 2
mapx = cv2.resize(mapx, (w+cell_size,)*2 )[half_cell_size:-half_cell_size,half_cell_size:-half_cell_size].astype(np.float32)
mapy = cv2.resize(mapy, (w+cell_size,)*2 )[half_cell_size:-half_cell_size,half_cell_size:-half_cell_size].astype(np.float32)
##############
# random warp V2
# pts1, pts2 = gen_pts(w, w, rnd_state)
# gridX = np.arange(w, dtype=np.int16)
# gridY = np.arange(w, dtype=np.int16)
# vy, vx = np.meshgrid(gridX, gridY)
# drigid = mls_rigid_deformation(vy, vx, pts1, pts2)
# mapy, mapx = drigid.astype(np.float32)
################
#random transform
random_transform_mat = cv2.getRotationMatrix2D((w // 2, w // 2), rotation, scale)
random_transform_mat[:, 2] += (tx*w, ty*w)

View file

@ -7,13 +7,20 @@ class DeepFakeArchi(nn.ArchiBase):
mod None - default
'quick'
opts ''
''
't'
"""
def __init__(self, resolution, mod=None, opts=None):
def __init__(self, resolution, use_fp16=False, mod=None, opts=None):
super().__init__()
if opts is None:
opts = ''
conv_dtype = tf.float16 if use_fp16 else tf.float32
if mod is None:
class Downscale(nn.ModelBase):
def __init__(self, in_ch, out_ch, kernel_size=5, *kwargs ):
@ -23,7 +30,7 @@ class DeepFakeArchi(nn.ArchiBase):
super().__init__(*kwargs)
def on_build(self, *args, **kwargs ):
self.conv1 = nn.Conv2D( self.in_ch, self.out_ch, kernel_size=self.kernel_size, strides=2, padding='SAME')
self.conv1 = nn.Conv2D( self.in_ch, self.out_ch, kernel_size=self.kernel_size, strides=2, padding='SAME', dtype=conv_dtype)
def forward(self, x):
x = self.conv1(x)
@ -51,7 +58,7 @@ class DeepFakeArchi(nn.ArchiBase):
class Upscale(nn.ModelBase):
def on_build(self, in_ch, out_ch, kernel_size=3):
self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME')
self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
def forward(self, x):
x = self.conv1(x)
@ -61,8 +68,8 @@ class DeepFakeArchi(nn.ArchiBase):
class ResidualBlock(nn.ModelBase):
def on_build(self, ch, kernel_size=3):
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
def forward(self, inp):
x = self.conv1(inp)
@ -78,13 +85,41 @@ class DeepFakeArchi(nn.ArchiBase):
super().__init__(**kwargs)
def on_build(self):
self.down1 = DownscaleBlock(self.in_ch, self.e_ch, n_downscales=4, kernel_size=5)
if 't' in opts:
self.down1 = Downscale(self.in_ch, self.e_ch, kernel_size=5)
self.res1 = ResidualBlock(self.e_ch)
self.down2 = Downscale(self.e_ch, self.e_ch*2, kernel_size=5)
self.down3 = Downscale(self.e_ch*2, self.e_ch*4, kernel_size=5)
self.down4 = Downscale(self.e_ch*4, self.e_ch*8, kernel_size=5)
self.down5 = Downscale(self.e_ch*8, self.e_ch*8, kernel_size=5)
self.res5 = ResidualBlock(self.e_ch*8)
else:
self.down1 = DownscaleBlock(self.in_ch, self.e_ch, n_downscales=4 if 't' not in opts else 5, kernel_size=5)
def forward(self, inp):
return nn.flatten(self.down1(inp))
def forward(self, x):
if use_fp16:
x = tf.cast(x, tf.float16)
if 't' in opts:
x = self.down1(x)
x = self.res1(x)
x = self.down2(x)
x = self.down3(x)
x = self.down4(x)
x = self.down5(x)
x = self.res5(x)
else:
x = self.down1(x)
x = nn.flatten(x)
if 'u' in opts:
x = nn.pixel_norm(x, axes=-1)
if use_fp16:
x = tf.cast(x, tf.float32)
return x
def get_out_res(self, res):
return res // (2**4)
return res // ( (2**4) if 't' not in opts else (2**5) )
def get_out_ch(self):
return self.e_ch * 8
@ -98,58 +133,84 @@ class DeepFakeArchi(nn.ArchiBase):
def on_build(self):
in_ch, ae_ch, ae_out_ch = self.in_ch, self.ae_ch, self.ae_out_ch
if 'u' in opts:
self.dense_norm = nn.DenseNorm()
self.dense1 = nn.Dense( in_ch, ae_ch )
self.dense2 = nn.Dense( ae_ch, lowest_dense_res * lowest_dense_res * ae_out_ch )
if 't' not in opts:
self.upscale1 = Upscale(ae_out_ch, ae_out_ch)
def forward(self, inp):
x = inp
if 'u' in opts:
x = self.dense_norm(x)
x = self.dense1(x)
x = self.dense2(x)
x = nn.reshape_4D (x, lowest_dense_res, lowest_dense_res, self.ae_out_ch)
if use_fp16:
x = tf.cast(x, tf.float16)
if 't' not in opts:
x = self.upscale1(x)
return x
def get_out_res(self):
return lowest_dense_res * 2
return lowest_dense_res * 2 if 't' not in opts else lowest_dense_res
def get_out_ch(self):
return self.ae_out_ch
class Decoder(nn.ModelBase):
def on_build(self, in_ch, d_ch, d_mask_ch):
if 't' not in opts:
self.upscale0 = Upscale(in_ch, d_ch*8, kernel_size=3)
self.upscale1 = Upscale(d_ch*8, d_ch*4, kernel_size=3)
self.upscale2 = Upscale(d_ch*4, d_ch*2, kernel_size=3)
self.res0 = ResidualBlock(d_ch*8, kernel_size=3)
self.res1 = ResidualBlock(d_ch*4, kernel_size=3)
self.res2 = ResidualBlock(d_ch*2, kernel_size=3)
self.out_conv = nn.Conv2D( d_ch*2, 3, kernel_size=1, padding='SAME')
self.upscalem0 = Upscale(in_ch, d_mask_ch*8, kernel_size=3)
self.upscalem1 = Upscale(d_mask_ch*8, d_mask_ch*4, kernel_size=3)
self.upscalem2 = Upscale(d_mask_ch*4, d_mask_ch*2, kernel_size=3)
self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME')
self.out_conv = nn.Conv2D( d_ch*2, 3, kernel_size=1, padding='SAME', dtype=conv_dtype)
if 'd' in opts:
self.out_conv1 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME')
self.out_conv2 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME')
self.out_conv3 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME')
self.out_conv1 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.out_conv2 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.out_conv3 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.upscalem3 = Upscale(d_mask_ch*2, d_mask_ch*1, kernel_size=3)
self.out_convm = nn.Conv2D( d_mask_ch*1, 1, kernel_size=1, padding='SAME')
self.out_convm = nn.Conv2D( d_mask_ch*1, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
else:
self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME')
self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
else:
self.upscale0 = Upscale(in_ch, d_ch*8, kernel_size=3)
self.upscale1 = Upscale(d_ch*8, d_ch*8, kernel_size=3)
self.upscale2 = Upscale(d_ch*8, d_ch*4, kernel_size=3)
self.upscale3 = Upscale(d_ch*4, d_ch*2, kernel_size=3)
self.res0 = ResidualBlock(d_ch*8, kernel_size=3)
self.res1 = ResidualBlock(d_ch*8, kernel_size=3)
self.res2 = ResidualBlock(d_ch*4, kernel_size=3)
self.res3 = ResidualBlock(d_ch*2, kernel_size=3)
def forward(self, inp):
z = inp
self.upscalem0 = Upscale(in_ch, d_mask_ch*8, kernel_size=3)
self.upscalem1 = Upscale(d_mask_ch*8, d_mask_ch*8, kernel_size=3)
self.upscalem2 = Upscale(d_mask_ch*8, d_mask_ch*4, kernel_size=3)
self.upscalem3 = Upscale(d_mask_ch*4, d_mask_ch*2, kernel_size=3)
self.out_conv = nn.Conv2D( d_ch*2, 3, kernel_size=1, padding='SAME', dtype=conv_dtype)
if 'd' in opts:
self.out_conv1 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.out_conv2 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.out_conv3 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.upscalem4 = Upscale(d_mask_ch*2, d_mask_ch*1, kernel_size=3)
self.out_convm = nn.Conv2D( d_mask_ch*1, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
else:
self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
def forward(self, z):
x = self.upscale0(z)
x = self.res0(x)
x = self.upscale1(x)
@ -157,40 +218,15 @@ class DeepFakeArchi(nn.ArchiBase):
x = self.upscale2(x)
x = self.res2(x)
if 't' in opts:
x = self.upscale3(x)
x = self.res3(x)
if 'd' in opts:
x0 = tf.nn.sigmoid(self.out_conv(x))
x0 = nn.upsample2d(x0)
x1 = tf.nn.sigmoid(self.out_conv1(x))
x1 = nn.upsample2d(x1)
x2 = tf.nn.sigmoid(self.out_conv2(x))
x2 = nn.upsample2d(x2)
x3 = tf.nn.sigmoid(self.out_conv3(x))
x3 = nn.upsample2d(x3)
if nn.data_format == "NHWC":
tile_cfg = ( 1, resolution // 2, resolution //2, 1)
else:
tile_cfg = ( 1, 1, resolution // 2, resolution //2 )
z0 = tf.concat ( ( tf.concat ( ( tf.ones ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ),
tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] )
z0 = tf.tile ( z0, tile_cfg )
z1 = tf.concat ( ( tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.ones ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ),
tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] )
z1 = tf.tile ( z1, tile_cfg )
z2 = tf.concat ( ( tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ),
tf.concat ( ( tf.ones ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] )
z2 = tf.tile ( z2, tile_cfg )
z3 = tf.concat ( ( tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ),
tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.ones ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] )
z3 = tf.tile ( z3, tile_cfg )
x = x0*z0 + x1*z1 + x2*z2 + x3*z3
x = tf.nn.sigmoid( nn.depth_to_space(tf.concat( (self.out_conv(x),
self.out_conv1(x),
self.out_conv2(x),
self.out_conv3(x)), nn.conv2d_ch_axis), 2) )
else:
x = tf.nn.sigmoid(self.out_conv(x))
@ -198,10 +234,21 @@ class DeepFakeArchi(nn.ArchiBase):
m = self.upscalem0(z)
m = self.upscalem1(m)
m = self.upscalem2(m)
if 't' in opts:
m = self.upscalem3(m)
if 'd' in opts:
m = self.upscalem4(m)
else:
if 'd' in opts:
m = self.upscalem3(m)
m = tf.nn.sigmoid(self.out_convm(m))
if use_fp16:
x = tf.cast(x, tf.float32)
m = tf.cast(m, tf.float32)
return x, m
self.Encoder = Encoder

View file

@ -55,8 +55,8 @@ class Conv2D(nn.LayerBase):
if kernel_initializer is None:
kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
if kernel_initializer is None:
kernel_initializer = nn.initializers.ca()
#if kernel_initializer is None:
#kernel_initializer = nn.initializers.ca()
self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.in_ch,self.out_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )

View file

@ -38,8 +38,9 @@ class Conv2DTranspose(nn.LayerBase):
if kernel_initializer is None:
kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
if kernel_initializer is None:
kernel_initializer = nn.initializers.ca()
#if kernel_initializer is None:
#kernel_initializer = nn.initializers.ca()
self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.out_ch,self.in_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )
if self.use_bias:

View file

@ -68,8 +68,8 @@ class DepthwiseConv2D(nn.LayerBase):
if kernel_initializer is None:
kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
if kernel_initializer is None:
kernel_initializer = nn.initializers.ca()
#if kernel_initializer is None:
#kernel_initializer = nn.initializers.ca()
self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.in_ch,self.depth_multiplier), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )

View file

@ -46,7 +46,9 @@ class Saveable():
raise Exception("name must be defined.")
name = self.name
for w, w_val in zip(weights, nn.tf_sess.run (weights)):
for w in weights:
w_val = nn.tf_sess.run (w).copy()
w_name_split = w.name.split('/', 1)
if name != w_name_split[0]:
raise Exception("weight first name != Saveable.name")

View file

@ -212,7 +212,9 @@ def gaussian_blur(input, radius=2.0):
return np.exp(-(float(x) - float(mu)) ** 2 / (2 * sigma ** 2))
def make_kernel(sigma):
kernel_size = max(3, int(2 * 2 * sigma + 1))
kernel_size = max(3, int(2 * 2 * sigma))
if kernel_size % 2 == 0:
kernel_size += 1
mean = np.floor(0.5 * kernel_size)
kernel_1d = np.array([gaussian(x, mean, sigma) for x in range(kernel_size)])
np_kernel = np.outer(kernel_1d, kernel_1d).astype(np.float32)
@ -237,19 +239,6 @@ def gaussian_blur(input, radius=2.0):
return x
nn.gaussian_blur = gaussian_blur
def get_gaussian_weights(batch_size, in_ch, resolution, num_scale=5, sigma=(0.5, 1., 2., 4., 8.)):
w = np.empty((num_scale, batch_size, in_ch, resolution, resolution))
for i in range(num_scale):
gaussian = np.exp(-1.*np.arange(-(resolution/2-0.5), resolution/2+0.5)**2/(2*sigma[i]**2))
gaussian = np.outer(gaussian, gaussian.reshape((resolution, 1))) # extend to 2D
gaussian = gaussian/np.sum(gaussian) # normalization
gaussian = np.reshape(gaussian, (1, 1, resolution, resolution)) # reshape to 3D
gaussian = np.tile(gaussian, (batch_size, in_ch, 1, 1))
w[i, :, :, :, :] = gaussian
return w
nn.get_gaussian_weights = get_gaussian_weights
def style_loss(target, style, gaussian_blur_radius=0.0, loss_weight=1.0, step_size=1):
def sd(content, style, loss_weight):
content_nc = content.shape[ nn.conv2d_ch_axis ]
@ -416,3 +405,68 @@ def tf_suppress_lower_mean(t, eps=0.00001):
q = q * (t/eps)
return q
"""
def _get_pixel_value(img, x, y):
shape = tf.shape(x)
batch_size = shape[0]
height = shape[1]
width = shape[2]
batch_idx = tf.range(0, batch_size)
batch_idx = tf.reshape(batch_idx, (batch_size, 1, 1))
b = tf.tile(batch_idx, (1, height, width))
indices = tf.stack([b, y, x], 3)
return tf.gather_nd(img, indices)
def bilinear_sampler(img, x, y):
H = tf.shape(img)[1]
W = tf.shape(img)[2]
H_MAX = tf.cast(H - 1, tf.int32)
W_MAX = tf.cast(W - 1, tf.int32)
# grab 4 nearest corner points for each (x_i, y_i)
x0 = tf.cast(tf.floor(x), tf.int32)
x1 = x0 + 1
y0 = tf.cast(tf.floor(y), tf.int32)
y1 = y0 + 1
# clip to range [0, H-1/W-1] to not violate img boundaries
x0 = tf.clip_by_value(x0, 0, W_MAX)
x1 = tf.clip_by_value(x1, 0, W_MAX)
y0 = tf.clip_by_value(y0, 0, H_MAX)
y1 = tf.clip_by_value(y1, 0, H_MAX)
# get pixel value at corner coords
Ia = _get_pixel_value(img, x0, y0)
Ib = _get_pixel_value(img, x0, y1)
Ic = _get_pixel_value(img, x1, y0)
Id = _get_pixel_value(img, x1, y1)
# recast as float for delta calculation
x0 = tf.cast(x0, tf.float32)
x1 = tf.cast(x1, tf.float32)
y0 = tf.cast(y0, tf.float32)
y1 = tf.cast(y1, tf.float32)
# calculate deltas
wa = (x1-x) * (y1-y)
wb = (x1-x) * (y-y0)
wc = (x-x0) * (y1-y)
wd = (x-x0) * (y-y0)
# add dimension for addition
wa = tf.expand_dims(wa, axis=3)
wb = tf.expand_dims(wb, axis=3)
wc = tf.expand_dims(wc, axis=3)
wd = tf.expand_dims(wd, axis=3)
# compute output
out = tf.add_n([wa*Ia, wb*Ib, wc*Ic, wd*Id])
return out
nn.bilinear_sampler = bilinear_sampler

View file

@ -50,11 +50,11 @@ class AdaBelief(nn.OptimizerBase):
updates = []
if self.clipnorm > 0.0:
norm = tf.sqrt( sum([tf.reduce_sum(tf.square(g)) for g,v in grads_vars]))
norm = tf.sqrt( sum([tf.reduce_sum(tf.square(tf.cast(g, tf.float32))) for g,v in grads_vars]))
updates += [ state_ops.assign_add( self.iterations, 1) ]
for i, (g,v) in enumerate(grads_vars):
if self.clipnorm > 0.0:
g = self.tf_clip_norm(g, self.clipnorm, norm)
g = self.tf_clip_norm(g, self.clipnorm, tf.cast(norm, g.dtype) )
ms = self.ms_dict[ v.name ]
vs = self.vs_dict[ v.name ]

View file

@ -47,11 +47,11 @@ class RMSprop(nn.OptimizerBase):
updates = []
if self.clipnorm > 0.0:
norm = tf.sqrt( sum([tf.reduce_sum(tf.square(g)) for g,v in grads_vars]))
norm = tf.sqrt( sum([tf.reduce_sum(tf.square(tf.cast(g, tf.float32))) for g,v in grads_vars]))
updates += [ state_ops.assign_add( self.iterations, 1) ]
for i, (g,v) in enumerate(grads_vars):
if self.clipnorm > 0.0:
g = self.tf_clip_norm(g, self.clipnorm, norm)
g = self.tf_clip_norm(g, self.clipnorm, tf.cast(norm, g.dtype) )
a = self.accumulators_dict[ v.name ]

10
main.py
View file

@ -153,6 +153,16 @@ if __name__ == "__main__":
p.add_argument('--execute-program', dest="execute_program", default=[], action='append', nargs='+')
p.set_defaults (func=process_train)
def process_exportdfm(arguments):
osex.set_process_lowest_prio()
from mainscripts import ExportDFM
ExportDFM.main(model_class_name = arguments.model_name, saved_models_path = Path(arguments.model_dir))
p = subparsers.add_parser( "exportdfm", help="Export model to use in DeepFaceLive.")
p.add_argument('--model-dir', required=True, action=fixPathAction, dest="model_dir", help="Saved models dir.")
p.add_argument('--model', required=True, dest="model_name", choices=pathex.get_all_dir_names_startswith ( Path(__file__).parent / 'models' , 'Model_'), help="Model class name.")
p.set_defaults (func=process_exportdfm)
def process_merge(arguments):
osex.set_process_lowest_prio()
from mainscripts import Merger

View file

@ -166,7 +166,7 @@ class FacesetResizerSubprocessor(Subprocessor):
def process_folder ( dirpath):
image_size = io.input_int(f"New image size", 512, valid_range=[256,2048])
image_size = io.input_int(f"New image size", 512, valid_range=[128,2048])
face_type = io.input_str ("Change face type", 'same', ['h','mf','f','wf','head','same']).lower()
if face_type == 'same':

View file

@ -49,6 +49,7 @@ def main (model_class_name=None,
model = models.import_model(model_class_name)(is_training=False,
saved_models_path=saved_models_path,
force_gpu_idxs=force_gpu_idxs,
force_model_name=force_model_name,
cpu_only=cpu_only)
predictor_func, predictor_input_shape, cfg = model.get_MergerConfig()

View file

@ -36,7 +36,7 @@ def trainerThread (s2c, c2s, e,
try:
start_time = time.time()
save_interval_min = 15
save_interval_min = 25
if not training_data_src_path.exists():
training_data_src_path.mkdir(exist_ok=True, parents=True)

View file

@ -23,6 +23,7 @@ from samplelib import SampleGeneratorBase
class ModelBase(object):
def __init__(self, is_training=False,
is_exporting=False,
saved_models_path=None,
training_data_src_path=None,
training_data_dst_path=None,
@ -37,6 +38,7 @@ class ModelBase(object):
silent_start=False,
**kwargs):
self.is_training = is_training
self.is_exporting = is_exporting
self.saved_models_path = saved_models_path
self.training_data_src_path = training_data_src_path
self.training_data_dst_path = training_data_dst_path
@ -234,7 +236,7 @@ class ModelBase(object):
preview_id_counter = 0
while not choosed:
self.sample_for_preview = self.generate_next_samples()
previews = self.get_static_previews()
previews = self.get_history_previews()
io.show_image( wnd_name, ( previews[preview_id_counter % len(previews) ][1] *255).astype(np.uint8) )
@ -260,7 +262,7 @@ class ModelBase(object):
self.sample_for_preview = self.generate_next_samples()
try:
self.get_static_previews()
self.get_history_previews()
except:
self.sample_for_preview = self.generate_next_samples()
@ -357,7 +359,7 @@ class ModelBase(object):
return ( ('loss_src', 0), ('loss_dst', 0) )
#overridable
def onGetPreview(self, sample):
def onGetPreview(self, sample, for_history=False):
#you can return multiple previews
#return [ ('preview_name',preview_rgb), ... ]
return []
@ -390,6 +392,9 @@ class ModelBase(object):
def get_static_previews(self):
return self.onGetPreview (self.sample_for_preview)
def get_history_previews(self):
return self.onGetPreview (self.sample_for_preview, for_history=True)
def get_preview_history_writer(self):
if self.preview_history_writer is None:
self.preview_history_writer = PreviewHistoryWriter()

View file

@ -16,39 +16,25 @@ class AMPModel(ModelBase):
#override
def on_initialize_options(self):
device_config = nn.getCurrentDeviceConfig()
lowest_vram = 2
if len(device_config.devices) != 0:
lowest_vram = device_config.devices.get_worst_device().total_mem_gb
if lowest_vram >= 4:
suggest_batch_size = 8
else:
suggest_batch_size = 4
yn_str = {True:'y',False:'n'}
min_res = 64
max_res = 640
default_resolution = self.options['resolution'] = self.load_or_def_option('resolution', 224)
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'wf')
default_models_opt_on_gpu = self.options['models_opt_on_gpu'] = self.load_or_def_option('models_opt_on_gpu', True)
default_ae_dims = self.options['ae_dims'] = self.load_or_def_option('ae_dims', 256)
default_inter_dims = self.options['inter_dims'] = self.load_or_def_option('inter_dims', 1024)
default_e_dims = self.options['e_dims'] = self.load_or_def_option('e_dims', 64)
default_d_dims = self.options['d_dims'] = self.options.get('d_dims', None)
default_d_mask_dims = self.options['d_mask_dims'] = self.options.get('d_mask_dims', None)
default_morph_factor = self.options['morph_factor'] = self.options.get('morph_factor', 0.33)
default_masked_training = self.options['masked_training'] = self.load_or_def_option('masked_training', True)
default_eyes_mouth_prio = self.options['eyes_mouth_prio'] = self.load_or_def_option('eyes_mouth_prio', True)
default_morph_factor = self.options['morph_factor'] = self.options.get('morph_factor', 0.5)
default_uniform_yaw = self.options['uniform_yaw'] = self.load_or_def_option('uniform_yaw', False)
lr_dropout = self.load_or_def_option('lr_dropout', 'n')
lr_dropout = {True:'y', False:'n'}.get(lr_dropout, lr_dropout) #backward comp
default_lr_dropout = self.options['lr_dropout'] = lr_dropout
# Uncomment it just if you want to impelement other loss functions
#default_loss_function = self.options['loss_function'] = self.load_or_def_option('loss_function', 'SSIM')
default_loss_function = self.options['loss_function'] = self.load_or_def_option('loss_function', 'SSIM')
default_blur_out_mask = self.options['blur_out_mask'] = self.load_or_def_option('blur_out_mask', False)
default_lr_dropout = self.options['lr_dropout'] = self.load_or_def_option('lr_dropout', 'n')
default_random_warp = self.options['random_warp'] = self.load_or_def_option('random_warp', True)
default_random_downsample = self.options['random_downsample'] = self.load_or_def_option('random_downsample', False)
@ -56,11 +42,11 @@ class AMPModel(ModelBase):
default_random_blur = self.options['random_blur'] = self.load_or_def_option('random_blur', False)
default_random_jpeg = self.options['random_jpeg'] = self.load_or_def_option('random_jpeg', False)
default_background_power = self.options['background_power'] = self.load_or_def_option('background_power', 0.0)
# Uncomment it just if you want to impelement other loss functions
#default_background_power = self.options['background_power'] = self.load_or_def_option('background_power', 0.0)
default_ct_mode = self.options['ct_mode'] = self.load_or_def_option('ct_mode', 'none')
default_random_color = self.options['random_color'] = self.load_or_def_option('random_color', False)
default_clipgrad = self.options['clipgrad'] = self.load_or_def_option('clipgrad', False)
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False)
ask_override = self.ask_override()
@ -70,13 +56,13 @@ class AMPModel(ModelBase):
self.ask_target_iter()
self.ask_random_src_flip()
self.ask_random_dst_flip()
self.ask_batch_size(suggest_batch_size)
self.ask_batch_size(8)
if self.is_first_run():
resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 32 .")
resolution = np.clip ( (resolution // 32) * 32, min_res, max_res)
resolution = np.clip ( (resolution // 32) * 32, 64, 640)
self.options['resolution'] = resolution
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['wf','head'], help_message="whole face / head").lower()
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['f','wf','head'], help_message="whole face / head").lower()
default_d_dims = self.options['d_dims'] = self.load_or_def_option('d_dims', 64)
@ -87,6 +73,7 @@ class AMPModel(ModelBase):
if self.is_first_run():
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dimensions", default_ae_dims, add_info="32-1024", help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
self.options['inter_dims'] = np.clip ( io.input_int("Inter dimensions", default_inter_dims, add_info="32-2048", help_message="Should be equal or more than AutoEncoder dimensions. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 2048 )
e_dims = np.clip ( io.input_int("Encoder dimensions", default_e_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 )
self.options['e_dims'] = e_dims + e_dims % 2
@ -97,16 +84,16 @@ class AMPModel(ModelBase):
d_mask_dims = np.clip ( io.input_int("Decoder mask dimensions", default_d_mask_dims, add_info="16-256", help_message="Typical mask dimensions = decoder dimensions / 3. If you manually cut out obstacles from the dst mask, you can increase this parameter to achieve better quality." ), 16, 256 )
self.options['d_mask_dims'] = d_mask_dims + d_mask_dims % 2
if self.is_first_run() or ask_override:
morph_factor = np.clip ( io.input_number ("Morph factor.", default_morph_factor, add_info="0.1 .. 0.5", help_message="The smaller the value, the more src-like facial expressions will appear. The larger the value, the less space there is to train a large dst faceset in the neural network. Typical fine value is 0.33"), 0.1, 0.5 )
morph_factor = np.clip ( io.input_number ("Morph factor.", default_morph_factor, add_info="0.1 .. 0.5", help_message="Typical fine value is 0.5"), 0.1, 0.5 )
self.options['morph_factor'] = morph_factor
if self.options['face_type'] == 'wf' or self.options['face_type'] == 'head':
self.options['masked_training'] = io.input_bool ("Masked training", default_masked_training, help_message="This option is available only for 'whole_face' or 'head' type. Masked training clips training area to full_face mask or XSeg mask, thus network will train the faces properly.")
self.options['eyes_mouth_prio'] = io.input_bool ("Eyes and mouth priority", default_eyes_mouth_prio, help_message='Helps to fix eye problems during training like "alien eyes" and wrong eyes direction. Also makes the detail of the teeth higher.')
if self.is_first_run() or ask_override:
self.options['uniform_yaw'] = io.input_bool ("Uniform yaw distribution of samples", default_uniform_yaw, help_message='Helps to fix blurry side faces due to small amount of them in the faceset.')
self.options['blur_out_mask'] = io.input_bool ("Blur out mask", default_blur_out_mask, help_message='Blurs nearby area outside of applied face mask of training samples. The result is the background near the face is smoothed and less noticeable on swapped face. The exact xseg mask in src and dst faceset is required.')
self.options['lr_dropout'] = io.input_str (f"Use learning rate dropout", default_lr_dropout, ['n','y','cpu'], help_message="When the face is trained enough, you can enable this option to get extra sharpness and reduce subpixel shake for less amount of iterations. Enabled it before `disable random warp` and before GAN. \nn - disabled.\ny - enabled\ncpu - enabled on CPU. This allows not to use extra VRAM, sacrificing 20% time of iteration.")
default_gan_power = self.options['gan_power'] = self.load_or_def_option('gan_power', 0.0)
default_gan_patch_size = self.options['gan_patch_size'] = self.load_or_def_option('gan_patch_size', self.options['resolution'] // 8)
default_gan_dims = self.options['gan_dims'] = self.load_or_def_option('gan_dims', 16)
@ -114,37 +101,29 @@ class AMPModel(ModelBase):
if self.is_first_run() or ask_override:
self.options['models_opt_on_gpu'] = io.input_bool ("Place models and optimizer on GPU", default_models_opt_on_gpu, help_message="When you train on one GPU, by default model and optimizer weights are placed on GPU to accelerate the process. You can place they on CPU to free up extra VRAM, thus set bigger dimensions.")
self.options['lr_dropout'] = io.input_str (f"Use learning rate dropout", default_lr_dropout, ['n','y','cpu'], help_message="When the face is trained enough, you can enable this option to get extra sharpness and reduce subpixel shake for less amount of iterations. Enabled it before `disable random warp` and before GAN. \nn - disabled.\ny - enabled\ncpu - enabled on CPU. This allows not to use extra VRAM, sacrificing 20% time of iteration.")
self.options['loss_function'] = io.input_str(f"Loss function", default_loss_function, ['SSIM', 'MS-SSIM', 'MS-SSIM+L1'],
help_message="Change loss function used for image quality assessment.")
self.options['random_warp'] = io.input_bool ("Enable random warp of samples", default_random_warp, help_message="Random warp is required to generalize facial expressions of both faces. When the face is trained enough, you can disable it to get extra sharpness and reduce subpixel shake for less amount of iterations.")
self.options['random_downsample'] = io.input_bool("Enable random downsample of samples", default_random_downsample, help_message="")
self.options['random_noise'] = io.input_bool("Enable random noise added to samples", default_random_noise, help_message="")
self.options['random_blur'] = io.input_bool("Enable random blur of samples", default_random_blur, help_message="")
self.options['random_jpeg'] = io.input_bool("Enable random jpeg compression of samples", default_random_jpeg, help_message="")
self.options['gan_power'] = np.clip ( io.input_number ("GAN power", default_gan_power, add_info="0.0 .. 1.0", help_message="Forces the neural network to learn small details of the face. Enable it only when the face is trained enough with lr_dropout(on) and random_warp(off), and don't disable. The higher the value, the higher the chances of artifacts. Typical fine value is 0.1"), 0.0, 1.0 )
self.options['gan_power'] = np.clip ( io.input_number ("GAN power", default_gan_power, add_info="0.0 .. 5.0", help_message="Forces the neural network to learn small details of the face. Enable it only when the face is trained enough with random_warp(off), and don't disable. The higher the value, the higher the chances of artifacts. Typical fine value is 0.1"), 0.0, 5.0 )
if self.options['gan_power'] != 0.0:
gan_patch_size = np.clip ( io.input_int("GAN patch size", default_gan_patch_size, add_info="3-640", help_message="The higher patch size, the higher the quality, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is resolution / 8." ), 3, 640 )
self.options['gan_patch_size'] = gan_patch_size
gan_dims = np.clip ( io.input_int("GAN dimensions", default_gan_dims, add_info="4-64", help_message="The dimensions of the GAN network. The higher dimensions, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is 16." ), 4, 64 )
gan_dims = np.clip ( io.input_int("GAN dimensions", default_gan_dims, add_info="4-512", help_message="The dimensions of the GAN network. The higher dimensions, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is 16." ), 4, 512 )
self.options['gan_dims'] = gan_dims
self.options['background_power'] = np.clip ( io.input_number("Background power", default_background_power, add_info="0.0..1.0", help_message="Learn the area outside of the mask. Helps smooth out area near the mask boundaries. Can be used at any time"), 0.0, 1.0 )
#self.options['background_power'] = np.clip ( io.input_number("Background power", default_background_power, add_info="0.0..1.0", help_message="Learn the area outside of the mask. Helps smooth out area near the mask boundaries. Can be used at any time"), 0.0, 1.0 )
self.options['ct_mode'] = io.input_str (f"Color transfer for src faceset", default_ct_mode, ['none','rct','lct','mkl','idt','sot', 'fs-aug'], help_message="Change color distribution of src samples close to dst samples. Try all modes to find the best.")
self.options['random_color'] = io.input_bool ("Random color", default_random_color, help_message="Samples are randomly rotated around the L axis in LAB colorspace, helps generalize training")
self.options['clipgrad'] = io.input_bool ("Enable gradient clipping", default_clipgrad, help_message="Gradient clipping reduces chance of model collapse, sacrificing speed of training.")
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain, help_message="Pretrain the model with large amount of various faces. After that, model can be used to train the fakes more quickly. Forces random_warp=N, random_flips=Y, gan_power=0.0, lr_dropout=N, uniform_yaw=Y")
self.gan_model_changed = (default_gan_patch_size != self.options['gan_patch_size']) or (default_gan_dims != self.options['gan_dims'])
self.pretrain_just_disabled = (default_pretrain == True and self.options['pretrain'] == False)
#override
def on_initialize(self):
@ -154,42 +133,52 @@ class AMPModel(ModelBase):
nn.initialize(data_format=self.model_data_format)
tf = nn.tf
self.resolution = resolution = self.options['resolution']
input_ch=3
resolution = self.resolution = self.options['resolution']
e_dims = self.options['e_dims']
ae_dims = self.options['ae_dims']
inter_dims = self.inter_dims = self.options['inter_dims']
inter_res = self.inter_res = resolution // 32
d_dims = self.options['d_dims']
d_mask_dims = self.options['d_mask_dims']
face_type = self.face_type = {'f' : FaceType.FULL,
'wf' : FaceType.WHOLE_FACE,
'head' : FaceType.HEAD}[ self.options['face_type'] ]
morph_factor = self.options['morph_factor']
gan_power = self.gan_power = self.options['gan_power']
random_warp = self.options['random_warp']
lowest_dense_res = self.lowest_dense_res = resolution // 32
blur_out_mask = self.options['blur_out_mask']
ct_mode = self.options['ct_mode']
if ct_mode == 'none':
ct_mode = None
use_fp16 = False
#if self.is_exporting:
#use_fp16 = io.input_bool ("Export quantized?", False, help_message='Makes the exported model faster. If you have problems, disable this option.')
conv_dtype = tf.float16 if use_fp16 else tf.float32
class Downscale(nn.ModelBase):
def __init__(self, in_ch, out_ch, kernel_size=5, *kwargs ):
self.in_ch = in_ch
self.out_ch = out_ch
self.kernel_size = kernel_size
super().__init__(*kwargs)
def on_build(self, *args, **kwargs ):
self.conv1 = nn.Conv2D( self.in_ch, self.out_ch, kernel_size=self.kernel_size, strides=2, padding='SAME')
def on_build(self, in_ch, out_ch, kernel_size=5 ):
self.conv1 = nn.Conv2D( in_ch, out_ch, kernel_size=kernel_size, strides=2, padding='SAME', dtype=conv_dtype)
def forward(self, x):
x = self.conv1(x)
x = tf.nn.leaky_relu(x, 0.1)
return x
def get_out_ch(self):
return self.out_ch
return tf.nn.leaky_relu(self.conv1(x), 0.1)
class Upscale(nn.ModelBase):
def on_build(self, in_ch, out_ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME')
self.conv1 = nn.Conv2D(in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
def forward(self, x):
x = self.conv1(x)
x = tf.nn.leaky_relu(x, 0.1)
x = nn.depth_to_space(x, 2)
x = nn.depth_to_space(tf.nn.leaky_relu(self.conv1(x), 0.1), 2)
return x
class ResidualBlock(nn.ModelBase):
def on_build(self, ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
def forward(self, inp):
x = self.conv1(inp)
@ -199,18 +188,19 @@ class AMPModel(ModelBase):
return x
class Encoder(nn.ModelBase):
def on_build(self, in_ch, e_ch, ae_ch):
self.down1 = Downscale(in_ch, e_ch, kernel_size=5)
self.res1 = ResidualBlock(e_ch)
self.down2 = Downscale(e_ch, e_ch*2, kernel_size=5)
self.down3 = Downscale(e_ch*2, e_ch*4, kernel_size=5)
self.down4 = Downscale(e_ch*4, e_ch*8, kernel_size=5)
self.down5 = Downscale(e_ch*8, e_ch*8, kernel_size=5)
self.res5 = ResidualBlock(e_ch*8)
self.dense1 = nn.Dense( lowest_dense_res*lowest_dense_res*e_ch*8, ae_ch )
def on_build(self):
self.down1 = Downscale(input_ch, e_dims, kernel_size=5)
self.res1 = ResidualBlock(e_dims)
self.down2 = Downscale(e_dims, e_dims*2, kernel_size=5)
self.down3 = Downscale(e_dims*2, e_dims*4, kernel_size=5)
self.down4 = Downscale(e_dims*4, e_dims*8, kernel_size=5)
self.down5 = Downscale(e_dims*8, e_dims*8, kernel_size=5)
self.res5 = ResidualBlock(e_dims*8)
self.dense1 = nn.Dense( (( resolution//(2**5) )**2) * e_dims*8, ae_dims )
def forward(self, inp):
x = inp
def forward(self, x):
if use_fp16:
x = tf.cast(x, tf.float16)
x = self.down1(x)
x = self.res1(x)
x = self.down2(x)
@ -218,56 +208,51 @@ class AMPModel(ModelBase):
x = self.down4(x)
x = self.down5(x)
x = self.res5(x)
x = nn.flatten(x)
x = nn.pixel_norm(x, axes=-1)
if use_fp16:
x = tf.cast(x, tf.float32)
x = nn.pixel_norm(nn.flatten(x), axes=-1)
x = self.dense1(x)
return x
class Inter(nn.ModelBase):
def __init__(self, ae_ch, ae_out_ch, **kwargs):
self.ae_ch, self.ae_out_ch = ae_ch, ae_out_ch
super().__init__(**kwargs)
def on_build(self):
ae_ch, ae_out_ch = self.ae_ch, self.ae_out_ch
self.dense2 = nn.Dense( ae_ch, lowest_dense_res * lowest_dense_res * ae_out_ch )
self.dense2 = nn.Dense(ae_dims, inter_res * inter_res * inter_dims)
def forward(self, inp):
x = inp
x = self.dense2(x)
x = nn.reshape_4D (x, lowest_dense_res, lowest_dense_res, self.ae_out_ch)
x = nn.reshape_4D (x, inter_res, inter_res, inter_dims)
return x
def get_out_ch(self):
return self.ae_out_ch
class Decoder(nn.ModelBase):
def on_build(self, in_ch, d_ch, d_mask_ch ):
self.upscale0 = Upscale(in_ch, d_ch*8, kernel_size=3)
self.upscale1 = Upscale(d_ch*8, d_ch*8, kernel_size=3)
self.upscale2 = Upscale(d_ch*8, d_ch*4, kernel_size=3)
self.upscale3 = Upscale(d_ch*4, d_ch*2, kernel_size=3)
def on_build(self ):
self.upscale0 = Upscale(inter_dims, d_dims*8, kernel_size=3)
self.upscale1 = Upscale(d_dims*8, d_dims*8, kernel_size=3)
self.upscale2 = Upscale(d_dims*8, d_dims*4, kernel_size=3)
self.upscale3 = Upscale(d_dims*4, d_dims*2, kernel_size=3)
self.res0 = ResidualBlock(d_ch*8, kernel_size=3)
self.res1 = ResidualBlock(d_ch*8, kernel_size=3)
self.res2 = ResidualBlock(d_ch*4, kernel_size=3)
self.res3 = ResidualBlock(d_ch*2, kernel_size=3)
self.res0 = ResidualBlock(d_dims*8, kernel_size=3)
self.res1 = ResidualBlock(d_dims*8, kernel_size=3)
self.res2 = ResidualBlock(d_dims*4, kernel_size=3)
self.res3 = ResidualBlock(d_dims*2, kernel_size=3)
self.upscalem0 = Upscale(in_ch, d_mask_ch*8, kernel_size=3)
self.upscalem1 = Upscale(d_mask_ch*8, d_mask_ch*8, kernel_size=3)
self.upscalem2 = Upscale(d_mask_ch*8, d_mask_ch*4, kernel_size=3)
self.upscalem3 = Upscale(d_mask_ch*4, d_mask_ch*2, kernel_size=3)
self.upscalem4 = Upscale(d_mask_ch*2, d_mask_ch*1, kernel_size=3)
self.out_convm = nn.Conv2D( d_mask_ch*1, 1, kernel_size=1, padding='SAME')
self.upscalem0 = Upscale(inter_dims, d_mask_dims*8, kernel_size=3)
self.upscalem1 = Upscale(d_mask_dims*8, d_mask_dims*8, kernel_size=3)
self.upscalem2 = Upscale(d_mask_dims*8, d_mask_dims*4, kernel_size=3)
self.upscalem3 = Upscale(d_mask_dims*4, d_mask_dims*2, kernel_size=3)
self.upscalem4 = Upscale(d_mask_dims*2, d_mask_dims*1, kernel_size=3)
self.out_convm = nn.Conv2D( d_mask_dims*1, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
self.out_conv = nn.Conv2D( d_ch*2, 3, kernel_size=1, padding='SAME')
self.out_conv1 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME')
self.out_conv2 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME')
self.out_conv3 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME')
self.out_conv = nn.Conv2D( d_dims*2, 3, kernel_size=1, padding='SAME', dtype=conv_dtype)
self.out_conv1 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.out_conv2 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.out_conv3 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
def forward(self, inp):
z = inp
def forward(self, z):
if use_fp16:
z = tf.cast(z, tf.float16)
x = self.upscale0(z)
x = self.res0(x)
@ -282,54 +267,22 @@ class AMPModel(ModelBase):
self.out_conv1(x),
self.out_conv2(x),
self.out_conv3(x)), nn.conv2d_ch_axis), 2) )
m = self.upscalem0(z)
m = self.upscalem1(m)
m = self.upscalem2(m)
m = self.upscalem3(m)
m = self.upscalem4(m)
m = tf.nn.sigmoid(self.out_convm(m))
if use_fp16:
x = tf.cast(x, tf.float32)
m = tf.cast(m, tf.float32)
return x, m
self.face_type = {'wf' : FaceType.WHOLE_FACE,
'head' : FaceType.HEAD}[ self.options['face_type'] ]
if 'eyes_prio' in self.options:
self.options.pop('eyes_prio')
eyes_mouth_prio = self.options['eyes_mouth_prio']
ae_dims = self.ae_dims = self.options['ae_dims']
e_dims = self.options['e_dims']
d_dims = self.options['d_dims']
d_mask_dims = self.options['d_mask_dims']
morph_factor = self.options['morph_factor']
pretrain = self.pretrain = self.options['pretrain']
if self.pretrain_just_disabled:
self.set_iter(0)
self.gan_power = gan_power = 0.0 if self.pretrain else self.options['gan_power']
random_warp = False if self.pretrain else self.options['random_warp']
random_src_flip = self.random_src_flip if not self.pretrain else True
random_dst_flip = self.random_dst_flip if not self.pretrain else True
if self.pretrain:
self.options_show_override['gan_power'] = 0.0
self.options_show_override['random_warp'] = False
self.options_show_override['lr_dropout'] = 'n'
self.options_show_override['uniform_yaw'] = True
masked_training = self.options['masked_training']
ct_mode = self.options['ct_mode']
if ct_mode == 'none':
ct_mode = None
models_opt_on_gpu = False if len(devices) == 0 else self.options['models_opt_on_gpu']
models_opt_device = nn.tf_default_device_name if models_opt_on_gpu and self.is_training else '/CPU:0'
optimizer_vars_on_cpu = models_opt_device=='/CPU:0'
input_ch=3
bgr_shape = self.bgr_shape = nn.get4Dshape(resolution,resolution,input_ch)
mask_shape = nn.get4Dshape(resolution,resolution,1)
self.model_filename_list = []
@ -350,12 +303,11 @@ class AMPModel(ModelBase):
self.morph_value_t = tf.placeholder (nn.floatx, (1,), name='morph_value_t')
# Initializing model classes
with tf.device (models_opt_device):
self.encoder = Encoder(in_ch=input_ch, e_ch=e_dims, ae_ch=ae_dims, name='encoder')
self.inter_src = Inter(ae_ch=ae_dims, ae_out_ch=ae_dims, name='inter_src')
self.inter_dst = Inter(ae_ch=ae_dims, ae_out_ch=ae_dims, name='inter_dst')
self.decoder = Decoder(in_ch=ae_dims, d_ch=d_dims, d_mask_ch=d_mask_dims, name='decoder')
self.encoder = Encoder(name='encoder')
self.inter_src = Inter(name='inter_src')
self.inter_dst = Inter(name='inter_dst')
self.decoder = Decoder(name='decoder')
self.model_filename_list += [ [self.encoder, 'encoder.npy'],
[self.inter_src, 'inter_src.npy'],
@ -363,30 +315,25 @@ class AMPModel(ModelBase):
[self.decoder , 'decoder.npy'] ]
if self.is_training:
if gan_power != 0:
self.GAN = nn.UNetPatchDiscriminator(patch_size=self.options['gan_patch_size'], in_ch=input_ch, base_ch=self.options['gan_dims'], name="GAN")
self.model_filename_list += [ [self.GAN, 'GAN.npy'] ]
# Initialize optimizers
lr=5e-5
lr_dropout = 0.3 if self.options['lr_dropout'] in ['y','cpu'] and not self.pretrain else 1.0
clipnorm = 1.0 if self.options['clipgrad'] else 0.0
lr_dropout = 0.3 if self.options['lr_dropout'] in ['y','cpu'] else 1.0
self.all_weights = self.encoder.get_weights() + self.inter_src.get_weights() + self.inter_dst.get_weights() + self.decoder.get_weights()
if pretrain:
self.trainable_weights = self.encoder.get_weights() + self.inter_dst.get_weights() + self.decoder.get_weights()
else:
self.trainable_weights = self.encoder.get_weights() + self.inter_src.get_weights() + self.inter_dst.get_weights() + self.decoder.get_weights()
self.G_weights = self.encoder.get_weights() + self.decoder.get_weights()
self.src_dst_opt = nn.AdaBelief(lr=lr, lr_dropout=lr_dropout, clipnorm=clipnorm, name='src_dst_opt')
self.src_dst_opt.initialize_variables (self.all_weights, vars_on_cpu=optimizer_vars_on_cpu, lr_dropout_on_cpu=self.options['lr_dropout']=='cpu')
#if random_warp:
# self.G_weights += self.inter_src.get_weights() + self.inter_dst.get_weights()
self.src_dst_opt = nn.AdaBelief(lr=5e-5, lr_dropout=lr_dropout, clipnorm=clipnorm, name='src_dst_opt')
self.src_dst_opt.initialize_variables (self.G_weights, vars_on_cpu=optimizer_vars_on_cpu)
self.model_filename_list += [ (self.src_dst_opt, 'src_dst_opt.npy') ]
if gan_power != 0:
self.GAN_opt = nn.AdaBelief(lr=lr, lr_dropout=lr_dropout, clipnorm=clipnorm, name='GAN_opt')
self.GAN_opt.initialize_variables ( self.GAN.get_weights(), vars_on_cpu=optimizer_vars_on_cpu, lr_dropout_on_cpu=self.options['lr_dropout']=='cpu')#+self.D_src_x2.get_weights()
self.model_filename_list += [ (self.GAN_opt, 'GAN_opt.npy') ]
self.GAN = nn.UNetPatchDiscriminator(patch_size=self.options['gan_patch_size'], in_ch=input_ch, base_ch=self.options['gan_dims'], name="GAN")
self.GAN_opt = nn.AdaBelief(lr=5e-5, lr_dropout=lr_dropout, clipnorm=clipnorm, name='GAN_opt')
self.GAN_opt.initialize_variables ( self.GAN.get_weights(), vars_on_cpu=optimizer_vars_on_cpu)
self.model_filename_list += [ [self.GAN, 'GAN.npy'],
[self.GAN_opt, 'GAN_opt.npy'] ]
if self.is_training:
# Adjust batch size for multiple GPU
@ -404,10 +351,14 @@ class AMPModel(ModelBase):
gpu_src_losses = []
gpu_dst_losses = []
gpu_G_loss_gvs = []
gpu_GAN_loss_gvs = []
gpu_D_code_loss_gvs = []
gpu_D_src_dst_loss_gvs = []
gpu_G_loss_gradients = []
gpu_GAN_loss_gradients = []
def DLossOnes(logits):
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(logits), logits=logits), axis=[1,2,3])
def DLossZeros(logits):
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(logits), logits=logits), axis=[1,2,3])
for gpu_id in range(gpu_count):
with tf.device( f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
@ -427,163 +378,114 @@ class AMPModel(ModelBase):
gpu_src_code = self.encoder (gpu_warped_src)
gpu_dst_code = self.encoder (gpu_warped_dst)
if pretrain:
gpu_src_inter_src_code = self.inter_src (gpu_src_code)
gpu_dst_inter_dst_code = self.inter_dst (gpu_dst_code)
gpu_src_code = gpu_src_inter_src_code * nn.random_binomial( [bs_per_gpu, gpu_src_inter_src_code.shape.as_list()[1], 1,1] , p=morph_factor)
gpu_dst_code = gpu_src_dst_code = gpu_dst_inter_dst_code * nn.random_binomial( [bs_per_gpu, gpu_dst_inter_dst_code.shape.as_list()[1], 1,1] , p=0.25)
else:
gpu_src_inter_src_code = self.inter_src (gpu_src_code)
gpu_src_inter_dst_code = self.inter_dst (gpu_src_code)
gpu_dst_inter_src_code = self.inter_src (gpu_dst_code)
gpu_dst_inter_dst_code = self.inter_dst (gpu_dst_code)
gpu_src_inter_src_code, gpu_src_inter_dst_code = self.inter_src (gpu_src_code), self.inter_dst (gpu_src_code)
gpu_dst_inter_src_code, gpu_dst_inter_dst_code = self.inter_src (gpu_dst_code), self.inter_dst (gpu_dst_code)
inter_dims_bin = int(inter_dims*morph_factor)
with tf.device(f'/CPU:0'):
inter_rnd_binomial = tf.stack([tf.random.shuffle(tf.concat([tf.tile(tf.constant([1], tf.float32), ( inter_dims_bin, )),
tf.tile(tf.constant([0], tf.float32), ( inter_dims-inter_dims_bin, ))], 0 )) for _ in range(bs_per_gpu)], 0)
inter_rnd_binomial = tf.stop_gradient(inter_rnd_binomial[...,None,None])
inter_rnd_binomial = nn.random_binomial( [bs_per_gpu, gpu_src_inter_src_code.shape.as_list()[1], 1,1] , p=morph_factor)
gpu_src_code = gpu_src_inter_src_code * inter_rnd_binomial + gpu_src_inter_dst_code * (1-inter_rnd_binomial)
gpu_dst_code = gpu_dst_inter_dst_code
ae_dims_slice = tf.cast(ae_dims*self.morph_value_t[0], tf.int32)
gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, ae_dims_slice , lowest_dense_res, lowest_dense_res]),
tf.slice(gpu_dst_inter_dst_code, [0,ae_dims_slice,0,0], [-1,ae_dims-ae_dims_slice, lowest_dense_res,lowest_dense_res]) ), 1 )
inter_dims_slice = tf.cast(inter_dims*self.morph_value_t[0], tf.int32)
gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, inter_dims_slice , inter_res, inter_res]),
tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,inter_dims-inter_dims_slice, inter_res,inter_res]) ), 1 )
gpu_pred_src_src, gpu_pred_src_srcm = self.decoder(gpu_src_code)
gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder(gpu_dst_code)
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)
gpu_pred_src_src_list.append(gpu_pred_src_src)
gpu_pred_dst_dst_list.append(gpu_pred_dst_dst)
gpu_pred_src_dst_list.append(gpu_pred_src_dst)
gpu_pred_src_src_list.append(gpu_pred_src_src), gpu_pred_src_srcm_list.append(gpu_pred_src_srcm)
gpu_pred_dst_dst_list.append(gpu_pred_dst_dst), gpu_pred_dst_dstm_list.append(gpu_pred_dst_dstm)
gpu_pred_src_dst_list.append(gpu_pred_src_dst), gpu_pred_src_dstm_list.append(gpu_pred_src_dstm)
gpu_pred_src_srcm_list.append(gpu_pred_src_srcm)
gpu_pred_dst_dstm_list.append(gpu_pred_dst_dstm)
gpu_pred_src_dstm_list.append(gpu_pred_src_dstm)
gpu_target_srcm_anti = 1-gpu_target_srcm
gpu_target_dstm_anti = 1-gpu_target_dstm
gpu_target_srcm_blur = nn.gaussian_blur(gpu_target_srcm, max(1, resolution // 32) )
gpu_target_srcm_blur = tf.clip_by_value(gpu_target_srcm_blur, 0, 0.5) * 2
gpu_target_srcm_gblur = nn.gaussian_blur(gpu_target_srcm, resolution // 32)
gpu_target_dstm_gblur = nn.gaussian_blur(gpu_target_dstm, resolution // 32)
gpu_target_dstm_blur = nn.gaussian_blur(gpu_target_dstm, max(1, resolution // 32) )
gpu_target_dstm_blur = tf.clip_by_value(gpu_target_dstm_blur, 0, 0.5) * 2
gpu_target_srcm_blur = tf.clip_by_value(gpu_target_srcm_gblur, 0, 0.5) * 2
gpu_target_dstm_blur = tf.clip_by_value(gpu_target_dstm_gblur, 0, 0.5) * 2
gpu_target_srcm_anti_blur = 1.0-gpu_target_srcm_blur
gpu_target_dstm_anti_blur = 1.0-gpu_target_dstm_blur
gpu_target_dst_anti_masked = gpu_target_dst*(1.0-gpu_target_dstm_blur)
gpu_target_src_anti_masked = gpu_target_src*(1.0-gpu_target_srcm_blur)
gpu_target_src_masked_opt = gpu_target_src*gpu_target_srcm_blur if masked_training else gpu_target_src
gpu_target_dst_masked_opt = gpu_target_dst*gpu_target_dstm_blur if masked_training else gpu_target_dst
if blur_out_mask:
sigma = resolution / 128
gpu_pred_src_src_masked_opt = gpu_pred_src_src*gpu_target_srcm_blur if masked_training else gpu_pred_src_src
gpu_pred_src_src_anti_masked = gpu_pred_src_src*(1.0-gpu_target_srcm_blur)
gpu_pred_dst_dst_masked_opt = gpu_pred_dst_dst*gpu_target_dstm_blur if masked_training else gpu_pred_dst_dst
gpu_pred_dst_dst_anti_masked = gpu_pred_dst_dst*(1.0-gpu_target_dstm_blur)
x = nn.gaussian_blur(gpu_target_src*gpu_target_srcm_anti, sigma)
y = 1-nn.gaussian_blur(gpu_target_srcm, sigma)
y = tf.where(tf.equal(y, 0), tf.ones_like(y), y)
gpu_target_src = gpu_target_src*gpu_target_srcm + (x/y)*gpu_target_srcm_anti
if self.options['loss_function'] == 'MS-SSIM':
gpu_dst_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0)
gpu_dst_loss += tf.reduce_mean ( 10*tf.square ( gpu_target_dst_masked_opt - gpu_pred_dst_dst_masked_opt ), axis=[1,2,3])
elif self.options['loss_function'] == 'MS-SSIM+L1':
gpu_dst_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution, use_l1=True)(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0)
else:
if resolution < 256:
gpu_dst_loss = tf.reduce_mean ( 10*nn.dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
else:
gpu_dst_loss = tf.reduce_mean ( 5*nn.dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
gpu_dst_loss += tf.reduce_mean ( 5*nn.dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/23.2) ), axis=[1])
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dst_masked_opt- gpu_pred_dst_dst_masked_opt ), axis=[1,2,3])
if eyes_mouth_prio:
gpu_dst_loss += tf.reduce_mean ( 300*tf.abs ( gpu_target_dst*gpu_target_dstm_em - gpu_pred_dst_dst*gpu_target_dstm_em ), axis=[1,2,3])
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] )
gpu_dst_loss += 0.1*tf.reduce_mean(tf.square(gpu_pred_dst_dst_anti_masked-gpu_target_dst_anti_masked),axis=[1,2,3] )
x = nn.gaussian_blur(gpu_target_dst*gpu_target_dstm_anti, sigma)
y = 1-nn.gaussian_blur(gpu_target_dstm, sigma)
y = tf.where(tf.equal(y, 0), tf.ones_like(y), y)
gpu_target_dst = gpu_target_dst*gpu_target_dstm + (x/y)*gpu_target_dstm_anti
if self.options['background_power'] > 0:
bg_factor = self.options['background_power']
gpu_target_src_masked = gpu_target_src*gpu_target_srcm_blur
gpu_target_dst_masked = gpu_target_dst*gpu_target_dstm_blur
gpu_target_src_anti_masked = gpu_target_src*gpu_target_srcm_anti_blur
gpu_target_dst_anti_masked = gpu_target_dst*gpu_target_dstm_anti_blur
if self.options['loss_function'] == 'MS-SSIM':
gpu_dst_loss += bg_factor * 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0)
gpu_dst_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_dst - gpu_pred_dst_dst ), axis=[1,2,3])
elif self.options['loss_function'] == 'MS-SSIM+L1':
gpu_dst_loss += bg_factor * 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution, use_l1=True)(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0)
else:
if resolution < 256:
gpu_dst_loss += bg_factor * tf.reduce_mean ( 10*nn.dssim(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
else:
gpu_dst_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
gpu_dst_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
gpu_dst_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_dst - gpu_pred_dst_dst ), axis=[1,2,3])
gpu_pred_src_src_masked = gpu_pred_src_src*gpu_target_srcm_blur
gpu_pred_dst_dst_masked = gpu_pred_dst_dst*gpu_target_dstm_blur
gpu_pred_src_src_anti_masked = gpu_pred_src_src*gpu_target_srcm_anti_blur
gpu_pred_dst_dst_anti_masked = gpu_pred_dst_dst*gpu_target_dstm_anti_blur
gpu_dst_losses += [gpu_dst_loss]
# Structural loss
gpu_src_loss = tf.reduce_mean (5*nn.dssim(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
gpu_src_loss += tf.reduce_mean (5*nn.dssim(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
gpu_dst_loss = tf.reduce_mean (5*nn.dssim(gpu_target_dst_masked, gpu_pred_dst_dst_masked, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
gpu_dst_loss += tf.reduce_mean (5*nn.dssim(gpu_target_dst_masked, gpu_pred_dst_dst_masked, max_val=1.0, filter_size=int(resolution/23.2) ), axis=[1])
if not pretrain:
if self.options['loss_function'] == 'MS-SSIM':
gpu_src_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0)
gpu_src_loss += tf.reduce_mean ( 10*tf.square ( gpu_target_src_masked_opt - gpu_pred_src_src_masked_opt ), axis=[1,2,3])
elif self.options['loss_function'] == 'MS-SSIM+L1':
gpu_src_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution, use_l1=True)(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0)
else:
if resolution < 256:
gpu_src_loss = tf.reduce_mean ( 10*nn.dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
else:
gpu_src_loss = tf.reduce_mean ( 5*nn.dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
gpu_src_loss += tf.reduce_mean ( 5*nn.dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
gpu_src_loss += tf.reduce_mean ( 10*tf.square ( gpu_target_src_masked_opt - gpu_pred_src_src_masked_opt ), axis=[1,2,3])
# Pixel loss
gpu_src_loss += tf.reduce_mean (10*tf.square(gpu_target_src_masked-gpu_pred_src_src_masked), axis=[1,2,3])
gpu_dst_loss += tf.reduce_mean (10*tf.square(gpu_target_dst_masked-gpu_pred_dst_dst_masked), axis=[1,2,3])
if eyes_mouth_prio:
# Eyes+mouth prio loss
gpu_src_loss += tf.reduce_mean (300*tf.abs (gpu_target_src*gpu_target_srcm_em-gpu_pred_src_src*gpu_target_srcm_em), axis=[1,2,3])
gpu_dst_loss += tf.reduce_mean (300*tf.abs (gpu_target_dst*gpu_target_dstm_em-gpu_pred_dst_dst*gpu_target_dstm_em), axis=[1,2,3])
# Mask loss
gpu_src_loss += tf.reduce_mean ( 10*tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] )
if self.options['background_power'] > 0:
bg_factor = self.options['background_power']
if self.options['loss_function'] == 'MS-SSIM':
gpu_src_loss += bg_factor * 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_src, gpu_pred_src_src, max_val=1.0)
gpu_src_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_src - gpu_pred_src_src ), axis=[1,2,3])
elif self.options['loss_function'] == 'MS-SSIM+L1':
gpu_src_loss += bg_factor * 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution, use_l1=True)(gpu_target_src, gpu_pred_src_src, max_val=1.0)
else:
if resolution < 256:
gpu_src_loss += bg_factor * tf.reduce_mean ( 10*nn.dssim(gpu_target_src, gpu_pred_src_src, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
else:
gpu_src_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_src, gpu_pred_src_src, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
gpu_src_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_src, gpu_pred_src_src, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
gpu_src_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_src - gpu_pred_src_src ), axis=[1,2,3])
else:
gpu_src_loss = gpu_dst_loss
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] )
gpu_src_losses += [gpu_src_loss]
if pretrain:
gpu_G_loss = gpu_dst_loss
else:
gpu_dst_losses += [gpu_dst_loss]
gpu_G_loss = gpu_src_loss + gpu_dst_loss
# dst-dst background weak loss
gpu_G_loss += tf.reduce_mean(0.1*tf.square(gpu_pred_dst_dst_anti_masked-gpu_target_dst_anti_masked),axis=[1,2,3] )
gpu_G_loss += 0.000001*nn.total_variation_mse(gpu_pred_dst_dst_anti_masked)
def DLossOnes(logits):
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(logits), logits=logits), axis=[1,2,3])
def DLossZeros(logits):
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(logits), logits=logits), axis=[1,2,3])
if gan_power != 0:
gpu_pred_src_src_d, gpu_pred_src_src_d2 = self.GAN(gpu_pred_src_src_masked_opt)
gpu_pred_dst_dst_d, gpu_pred_dst_dst_d2 = self.GAN(gpu_pred_dst_dst_masked_opt)
gpu_target_src_d, gpu_target_src_d2 = self.GAN(gpu_target_src_masked_opt)
gpu_target_dst_d, gpu_target_dst_d2 = self.GAN(gpu_target_dst_masked_opt)
gpu_pred_src_src_d, gpu_pred_src_src_d2 = self.GAN(gpu_pred_src_src_masked)
gpu_pred_dst_dst_d, gpu_pred_dst_dst_d2 = self.GAN(gpu_pred_dst_dst_masked)
gpu_target_src_d, gpu_target_src_d2 = self.GAN(gpu_target_src_masked)
gpu_target_dst_d, gpu_target_dst_d2 = self.GAN(gpu_target_dst_masked)
gpu_D_src_dst_loss = (DLossOnes (gpu_target_src_d) + DLossOnes (gpu_target_src_d2) + \
gpu_GAN_loss = (DLossOnes (gpu_target_src_d) + DLossOnes (gpu_target_src_d2) + \
DLossZeros(gpu_pred_src_src_d) + DLossZeros(gpu_pred_src_src_d2) + \
DLossOnes (gpu_target_dst_d) + DLossOnes (gpu_target_dst_d2) + \
DLossZeros(gpu_pred_dst_dst_d) + DLossZeros(gpu_pred_dst_dst_d2)
) * (1.0 / 8)
gpu_D_src_dst_loss_gvs += [ nn.gradients (gpu_D_src_dst_loss, self.GAN.get_weights() ) ]
gpu_GAN_loss_gradients += [ nn.gradients (gpu_GAN_loss, self.GAN.get_weights() ) ]
gpu_G_loss += (DLossOnes(gpu_pred_src_src_d) + DLossOnes(gpu_pred_src_src_d2) + \
DLossOnes(gpu_pred_dst_dst_d) + DLossOnes(gpu_pred_dst_dst_d2)
) * gan_power
if masked_training:
# Minimal src-src-bg rec with total_variation_mse to suppress random bright dots from gan
gpu_G_loss += 0.000001*nn.total_variation_mse(gpu_pred_src_src)
gpu_G_loss += 0.02*tf.reduce_mean(tf.square(gpu_pred_src_src_anti_masked-gpu_target_src_anti_masked),axis=[1,2,3] )
gpu_G_loss_gvs += [ nn.gradients ( gpu_G_loss, self.trainable_weights ) ]
gpu_G_loss_gradients += [ nn.gradients ( gpu_G_loss, self.G_weights ) ]
# Average losses and gradients, and create optimizer update ops
with tf.device(f'/CPU:0'):
@ -597,17 +499,15 @@ class AMPModel(ModelBase):
with tf.device (models_opt_device):
src_loss = tf.concat(gpu_src_losses, 0)
dst_loss = tf.concat(gpu_dst_losses, 0)
src_dst_loss_gv_op = self.src_dst_opt.get_update_op (nn.average_gv_list (gpu_G_loss_gvs))
train_op = self.src_dst_opt.get_update_op (nn.average_gv_list (gpu_G_loss_gradients))
if gan_power != 0:
src_D_src_dst_loss_gv_op = self.GAN_opt.get_update_op (nn.average_gv_list(gpu_D_src_dst_loss_gvs) )
#GAN_loss_gv_op = self.src_dst_opt.get_update_op (nn.average_gv_list(gpu_GAN_loss_gvs) )
GAN_train_op = self.GAN_opt.get_update_op (nn.average_gv_list(gpu_GAN_loss_gradients) )
# Initializing training and view functions
def src_dst_train(warped_src, target_src, target_srcm, target_srcm_em, \
def train(warped_src, target_src, target_srcm, target_srcm_em, \
warped_dst, target_dst, target_dstm, target_dstm_em, ):
s, d, _ = nn.tf_sess.run ( [ src_loss, dst_loss, src_dst_loss_gv_op],
s, d, _ = nn.tf_sess.run ([src_loss, dst_loss, train_op],
feed_dict={self.warped_src :warped_src,
self.target_src :target_src,
self.target_srcm:target_srcm,
@ -618,12 +518,12 @@ class AMPModel(ModelBase):
self.target_dstm_em:target_dstm_em,
})
return s, d
self.src_dst_train = src_dst_train
self.train = train
if gan_power != 0:
def D_src_dst_train(warped_src, target_src, target_srcm, target_srcm_em, \
def GAN_train(warped_src, target_src, target_srcm, target_srcm_em, \
warped_dst, target_dst, target_dstm, target_dstm_em, ):
nn.tf_sess.run ([src_D_src_dst_loss_gv_op], feed_dict={self.warped_src :warped_src,
nn.tf_sess.run ([GAN_train_op], feed_dict={self.warped_src :warped_src,
self.target_src :target_src,
self.target_srcm:target_srcm,
self.target_srcm_em:target_srcm_em,
@ -631,8 +531,7 @@ class AMPModel(ModelBase):
self.target_dst :target_dst,
self.target_dstm:target_dstm,
self.target_dstm_em:target_dstm_em})
self.D_src_dst_train = D_src_dst_train
self.GAN_train = GAN_train
def AE_view(warped_src, warped_dst, morph_value):
return nn.tf_sess.run ( [pred_src_src, pred_dst_dst, pred_dst_dstm, pred_src_dst, pred_src_dstm],
@ -646,9 +545,9 @@ class AMPModel(ModelBase):
gpu_dst_inter_src_code = self.inter_src (gpu_dst_code)
gpu_dst_inter_dst_code = self.inter_dst (gpu_dst_code)
ae_dims_slice = tf.cast(ae_dims*self.morph_value_t[0], tf.int32)
gpu_src_dst_code = tf.concat( ( tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, ae_dims_slice , lowest_dense_res, lowest_dense_res]),
tf.slice(gpu_dst_inter_dst_code, [0,ae_dims_slice,0,0], [-1,ae_dims-ae_dims_slice, lowest_dense_res,lowest_dense_res]) ), 1 )
inter_dims_slice = tf.cast(inter_dims*self.morph_value_t[0], tf.int32)
gpu_src_dst_code = tf.concat( ( tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, inter_dims_slice , inter_res, inter_res]),
tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,inter_dims-inter_dims_slice, inter_res,inter_res]) ), 1 )
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)
_, gpu_pred_dst_dstm = self.decoder(gpu_dst_inter_dst_code)
@ -660,33 +559,24 @@ class AMPModel(ModelBase):
# Loading/initializing all models/optimizers weights
for model, filename in io.progress_bar_generator(self.model_filename_list, "Initializing models"):
if self.pretrain_just_disabled:
do_init = False
if model == self.inter_src or model == self.inter_dst:
do_init = True
else:
do_init = self.is_first_run()
if self.is_training and gan_power != 0 and model == self.GAN:
if self.gan_model_changed:
do_init = True
if not do_init:
do_init = not model.load_weights( self.get_strpath_storage_for_file(filename) )
if do_init:
model.init_weights()
###############
# initializing sample generators
if self.is_training:
training_data_src_path = self.training_data_src_path if not self.pretrain else self.get_pretraining_data_path()
training_data_dst_path = self.training_data_dst_path if not self.pretrain else self.get_pretraining_data_path()
training_data_src_path = self.training_data_src_path #if not self.pretrain else self.get_pretraining_data_path()
training_data_dst_path = self.training_data_dst_path #if not self.pretrain else self.get_pretraining_data_path()
random_ct_samples_path=training_data_dst_path if ct_mode is not None and not self.pretrain else None
random_ct_samples_path=training_data_dst_path if ct_mode is not None else None #and not self.pretrain
cpu_count = min(multiprocessing.cpu_count(), 8)
cpu_count = multiprocessing.cpu_count()
src_generators_count = cpu_count // 2
dst_generators_count = cpu_count // 2
if ct_mode is not None:
@ -700,7 +590,7 @@ class AMPModel(ModelBase):
self.set_training_data_generators ([
SampleGeneratorFace(training_data_src_path, random_ct_samples_path=random_ct_samples_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=random_src_flip),
sample_process_options=SampleProcessor.Options(random_flip=self.random_src_flip),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp,
'random_downsample': self.options['random_downsample'],
'random_noise': self.options['random_noise'],
@ -708,15 +598,17 @@ class AMPModel(ModelBase):
'random_jpeg': self.options['random_jpeg'],
'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode,
'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False,
'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode,
'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
uniform_yaw_distribution=self.options['uniform_yaw'] or self.pretrain,
uniform_yaw_distribution=self.options['uniform_yaw'], #or self.pretrain
generators_count=src_generators_count ),
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=random_dst_flip),
sample_process_options=SampleProcessor.Options(random_flip=self.random_dst_flip),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp,
'random_downsample': self.options['random_downsample'],
'random_noise': self.options['random_noise'],
@ -728,17 +620,60 @@ class AMPModel(ModelBase):
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
uniform_yaw_distribution=self.options['uniform_yaw'] or self.pretrain,
uniform_yaw_distribution=self.options['uniform_yaw'], #or self.pretrain,
generators_count=dst_generators_count )
])
"""SampleGeneratorFace(training_data_src_path, random_ct_samples_path=random_ct_samples_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=self.random_src_flip),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp,
'random_downsample': self.options['random_downsample'],
'random_noise': self.options['random_noise'],
'random_blur': self.options['random_blur'],
'random_jpeg': self.options['random_jpeg'],
'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode,
'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False
, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': ct_mode,
'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False,
'transform':True, 'channel_type' : SampleProcessor.ChannelType.G,
'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE,'face_type':face_type,
'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False,
'transform':True, 'channel_type' : SampleProcessor.ChannelType.G,
'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':face_type,
'data_format':nn.data_format, 'resolution': resolution},
],
uniform_yaw_distribution=self.options['uniform_yaw'],# or self.pretrain,
generators_count=src_generators_count ),
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=self.random_dst_flip),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp,
'random_downsample': self.options['random_downsample'],
'random_noise': self.options['random_noise'],
'random_blur': self.options['random_blur'],
'random_jpeg': self.options['random_jpeg'],
'transform':True, 'channel_type' : channel_type, 'ct_mode': fs_aug,
'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.EYES_MOUTH, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
uniform_yaw_distribution=self.options['uniform_yaw'],# or self.pretrain,
generators_count=dst_generators_count )
])"""
self.last_src_samples_loss = []
self.last_dst_samples_loss = []
if self.pretrain_just_disabled:
self.update_sample_for_preview(force_new=True)
"""
def export_dfm (self):
output_path=self.get_strpath_storage_for_file('model.dfm')
io.log_info(f'Dumping .dfm to {output_path}')
def dump_ckpt(self):
tf = nn.tf
with tf.device (nn.tf_default_device_name):
warped_dst = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face')
@ -749,9 +684,9 @@ class AMPModel(ModelBase):
gpu_dst_inter_src_code = self.inter_src ( gpu_dst_code)
gpu_dst_inter_dst_code = self.inter_dst ( gpu_dst_code)
ae_dims_slice = tf.cast(self.ae_dims*morph_value[0], tf.int32)
gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, ae_dims_slice , self.lowest_dense_res, self.lowest_dense_res]),
tf.slice(gpu_dst_inter_dst_code, [0,ae_dims_slice,0,0], [-1,self.ae_dims-ae_dims_slice, self.lowest_dense_res,self.lowest_dense_res]) ), 1 )
inter_dims_slice = tf.cast(self.inter_dims*morph_value[0], tf.int32)
gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, inter_dims_slice , self.inter_res, self.inter_res]),
tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,self.inter_dims-inter_dims_slice, self.inter_res,self.inter_res]) ), 1 )
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)
_, gpu_pred_dst_dstm = self.decoder(gpu_dst_inter_dst_code)
@ -770,10 +705,16 @@ class AMPModel(ModelBase):
['out_face_mask','out_celeb_face','out_celeb_face_mask']
)
pb_filepath = self.get_strpath_storage_for_file('.pb')
with tf.gfile.GFile(pb_filepath, "wb") as f:
f.write(output_graph_def.SerializeToString())
import tf2onnx
with tf.device("/CPU:0"):
model_proto, _ = tf2onnx.convert._convert_common(
output_graph_def,
name='AMP',
input_names=['in_face:0','morph_value:0'],
output_names=['out_face_mask:0','out_celeb_face:0','out_celeb_face_mask:0'],
opset=9,
output_path=output_path)
"""
#override
def get_model_filename_list(self):
return self.model_filename_list
@ -795,35 +736,35 @@ class AMPModel(ModelBase):
( (warped_src, target_src, target_srcm, target_srcm_em), \
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = self.generate_next_samples()
src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
src_loss, dst_loss = self.train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
for i in range(bs):
self.last_src_samples_loss.append ( (target_src[i], target_srcm[i], target_srcm_em[i], src_loss[i] ) )
self.last_dst_samples_loss.append ( (target_dst[i], target_dstm[i], target_dstm_em[i], dst_loss[i] ) )
self.last_src_samples_loss.append ( (src_loss[i], target_src[i], target_srcm[i], target_srcm_em[i]) )
self.last_dst_samples_loss.append ( (dst_loss[i], target_dst[i], target_dstm[i], target_dstm_em[i]) )
if len(self.last_src_samples_loss) >= bs*16:
src_samples_loss = sorted(self.last_src_samples_loss, key=operator.itemgetter(3), reverse=True)
dst_samples_loss = sorted(self.last_dst_samples_loss, key=operator.itemgetter(3), reverse=True)
src_samples_loss = sorted(self.last_src_samples_loss, key=operator.itemgetter(0), reverse=True)
dst_samples_loss = sorted(self.last_dst_samples_loss, key=operator.itemgetter(0), reverse=True)
target_src = np.stack( [ x[0] for x in src_samples_loss[:bs] ] )
target_srcm = np.stack( [ x[1] for x in src_samples_loss[:bs] ] )
target_srcm_em = np.stack( [ x[2] for x in src_samples_loss[:bs] ] )
target_src = np.stack( [ x[1] for x in src_samples_loss[:bs] ] )
target_srcm = np.stack( [ x[2] for x in src_samples_loss[:bs] ] )
target_srcm_em = np.stack( [ x[3] for x in src_samples_loss[:bs] ] )
target_dst = np.stack( [ x[0] for x in dst_samples_loss[:bs] ] )
target_dstm = np.stack( [ x[1] for x in dst_samples_loss[:bs] ] )
target_dstm_em = np.stack( [ x[2] for x in dst_samples_loss[:bs] ] )
target_dst = np.stack( [ x[1] for x in dst_samples_loss[:bs] ] )
target_dstm = np.stack( [ x[2] for x in dst_samples_loss[:bs] ] )
target_dstm_em = np.stack( [ x[3] for x in dst_samples_loss[:bs] ] )
src_loss, dst_loss = self.src_dst_train (target_src, target_src, target_srcm, target_srcm_em, target_dst, target_dst, target_dstm, target_dstm_em)
src_loss, dst_loss = self.train (target_src, target_src, target_srcm, target_srcm_em, target_dst, target_dst, target_dstm, target_dstm_em)
self.last_src_samples_loss = []
self.last_dst_samples_loss = []
if self.gan_power != 0:
self.D_src_dst_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
self.GAN_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
#override
def onGetPreview(self, samples):
def onGetPreview(self, samples, for_history=False):
( (warped_src, target_src, target_srcm, target_srcm_em),
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples
@ -853,18 +794,17 @@ class AMPModel(ModelBase):
result = []
i = np.random.randint(n_samples)
i = np.random.randint(n_samples) if not for_history else 0
st = [ np.concatenate ((S[i], D[i], DD[i]*DDM_000[i]), axis=1) ]
st += [ np.concatenate ((SS[i], DD[i], SD_075[i] ), axis=1) ]
st += [ np.concatenate ((SS[i], DD[i], SD_100[i] ), axis=1) ]
result += [ ('AMP morph 0.75', np.concatenate (st, axis=0 )), ]
result += [ ('AMP morph 1.0', np.concatenate (st, axis=0 )), ]
st = [ np.concatenate ((DD[i], SD_025[i], SD_050[i]), axis=1) ]
st += [ np.concatenate ((SD_065[i], SD_075[i], SD_100[i]), axis=1) ]
result += [ ('AMP morph list', np.concatenate (st, axis=0 )), ]
st = [ np.concatenate ((DD[i], SD_025[i]*DDM_025[i]*SDM_025[i], SD_050[i]*DDM_050[i]*SDM_050[i]), axis=1) ]
st += [ np.concatenate ((SD_065[i]*DDM_065[i]*SDM_065[i], SD_075[i]*DDM_075[i]*SDM_075[i], SD_100[i]*DDM_100[i]*SDM_100[i]), axis=1) ]
result += [ ('AMP morph list masked', np.concatenate (st, axis=0 )), ]
@ -880,7 +820,7 @@ class AMPModel(ModelBase):
#override
def get_MergerConfig(self):
morph_factor = np.clip ( io.input_number ("Morph factor", 0.75, add_info="0.0 .. 1.0"), 0.0, 1.0 )
morph_factor = np.clip ( io.input_number ("Morph factor", 1.0, add_info="0.0 .. 1.0"), 0.0, 1.0 )
def predictor_morph(face):
return self.predictor_func(face, morph_factor)

View file

@ -278,7 +278,7 @@ class QModel(ModelBase):
return ( ('src_loss', src_loss), ('dst_loss', dst_loss), )
#override
def onGetPreview(self, samples):
def onGetPreview(self, samples, for_history=False):
( (warped_src, target_src, target_srcm),
(warped_dst, target_dst, target_dstm) ) = samples

View file

@ -30,13 +30,12 @@ class SAEHDModel(ModelBase):
min_res = 64
max_res = 640
default_usefp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
default_resolution = self.options['resolution'] = self.load_or_def_option('resolution', 128)
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'f')
default_models_opt_on_gpu = self.options['models_opt_on_gpu'] = self.load_or_def_option('models_opt_on_gpu', True)
archi = self.load_or_def_option('archi', 'liae-ud')
archi = {'dfuhd':'df-u','liaeuhd':'liae-u'}.get(archi, archi) #backward comp
default_archi = self.options['archi'] = archi
default_archi = self.options['archi'] = self.load_or_def_option('archi', 'liae-ud')
default_ae_dims = self.options['ae_dims'] = self.load_or_def_option('ae_dims', 256)
default_e_dims = self.options['e_dims'] = self.load_or_def_option('e_dims', 64)
@ -46,6 +45,7 @@ class SAEHDModel(ModelBase):
default_eyes_prio = self.options['eyes_prio'] = self.load_or_def_option('eyes_prio', False)
default_mouth_prio = self.options['mouth_prio'] = self.load_or_def_option('mouth_prio', False)
default_uniform_yaw = self.options['uniform_yaw'] = self.load_or_def_option('uniform_yaw', False)
default_blur_out_mask = self.options['blur_out_mask'] = self.load_or_def_option('blur_out_mask', False)
default_adabelief = self.options['adabelief'] = self.load_or_def_option('adabelief', True)
@ -80,6 +80,7 @@ class SAEHDModel(ModelBase):
self.ask_random_src_flip()
self.ask_random_dst_flip()
self.ask_batch_size(suggest_batch_size)
self.options['use_fp16'] = io.input_bool ("Use fp16", default_usefp16, help_message='Increases training/inference speed, reduces model size. Model may crash. Enable it after 1-5k iters.')
if self.is_first_run():
resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16 and 32 for -d archi.")
@ -112,7 +113,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
if archi_opts is not None:
if len(archi_opts) == 0:
continue
if len([ 1 for opt in archi_opts if opt not in ['u','d'] ]) != 0:
if len([ 1 for opt in archi_opts if opt not in ['u','d','t'] ]) != 0:
continue
if 'd' in archi_opts:
@ -147,6 +148,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
self.options['mouth_prio'] = io.input_bool ("Mouth priority", default_mouth_prio, help_message='Helps to fix mouth problems during training by forcing the neural network to train mouth with higher priority similar to eyes ')
self.options['uniform_yaw'] = io.input_bool ("Uniform yaw distribution of samples", default_uniform_yaw, help_message='Helps to fix blurry side faces due to small amount of them in the faceset.')
self.options['blur_out_mask'] = io.input_bool ("Blur out mask", default_blur_out_mask, help_message='Blurs nearby area outside of applied face mask of training samples. The result is the background near the face is smoothed and less noticeable on swapped face. The exact xseg mask in src and dst faceset is required.')
default_gan_version = self.options['gan_version'] = self.load_or_def_option('gan_version', 2)
default_gan_power = self.options['gan_power'] = self.load_or_def_option('gan_power', 0.0)
@ -251,10 +253,16 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
adabelief = self.options['adabelief']
use_fp16 = False
if self.is_exporting:
use_fp16 = io.input_bool ("Export quantized?", False, help_message='Makes the exported model faster. If you have problems, disable this option.')
self.gan_power = gan_power = 0.0 if self.pretrain else self.options['gan_power']
random_warp = False if self.pretrain else self.options['random_warp']
random_src_flip = self.random_src_flip if not self.pretrain else True
random_dst_flip = self.random_dst_flip if not self.pretrain else True
blur_out_mask = self.options['blur_out_mask']
learn_dst_bg = False#True
if self.pretrain:
self.options_show_override['gan_power'] = 0.0
@ -293,7 +301,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
self.target_dstm_em = tf.placeholder (nn.floatx, mask_shape, name='target_dstm_em')
# Initializing model classes
model_archi = nn.DeepFakeArchi(resolution, opts=archi_opts)
model_archi = nn.DeepFakeArchi(resolution, use_fp16=use_fp16, opts=archi_opts)
with tf.device (models_opt_device):
if 'df' in archi_type:
@ -407,6 +415,22 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
gpu_target_dstm_all = self.target_dstm[batch_slice,:,:,:]
gpu_target_dstm_em = self.target_dstm_em[batch_slice,:,:,:]
gpu_target_srcm_anti = 1-gpu_target_srcm_all
gpu_target_dstm_anti = 1-gpu_target_dstm_all
if blur_out_mask:
sigma = resolution / 128
x = nn.gaussian_blur(gpu_target_src*gpu_target_srcm_anti, sigma)
y = 1-nn.gaussian_blur(gpu_target_srcm_all, sigma)
y = tf.where(tf.equal(y, 0), tf.ones_like(y), y)
gpu_target_src = gpu_target_src*gpu_target_srcm_all + (x/y)*gpu_target_srcm_anti
x = nn.gaussian_blur(gpu_target_dst*gpu_target_dstm_anti, sigma)
y = 1-nn.gaussian_blur(gpu_target_dstm_all, sigma)
y = tf.where(tf.equal(y, 0), tf.ones_like(y), y)
gpu_target_dst = gpu_target_dst*gpu_target_dstm_all + (x/y)*gpu_target_dstm_anti
# process model tensors
if 'df' in archi_type:
gpu_src_code = self.inter(self.encoder(gpu_warped_src))
@ -414,6 +438,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
gpu_pred_src_src, gpu_pred_src_srcm = self.decoder_src(gpu_src_code)
gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder_dst(gpu_dst_code)
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder_src(gpu_dst_code)
gpu_pred_src_dst_no_code_grad, _ = self.decoder_src(tf.stop_gradient(gpu_dst_code))
elif 'liae' in archi_type:
gpu_src_code = self.encoder (gpu_warped_src)
@ -427,7 +452,9 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
gpu_pred_src_src, gpu_pred_src_srcm = self.decoder(gpu_src_code)
gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder(gpu_dst_code)
gpu_pred_dst_dst_no_code_grad, _ = self.decoder(tf.stop_gradient(gpu_dst_code))
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)
gpu_pred_src_dst_no_code_grad, _ = self.decoder(tf.stop_gradient(gpu_src_dst_code))
gpu_pred_src_src_list.append(gpu_pred_src_src)
gpu_pred_dst_dst_list.append(gpu_pred_dst_dst)
@ -449,25 +476,31 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
gpu_target_srcm_blur = nn.gaussian_blur(gpu_target_srcm, max(1, resolution // 32) )
gpu_target_srcm_blur = tf.clip_by_value(gpu_target_srcm_blur, 0, 0.5) * 2
gpu_target_srcm_anti_blur = 1.0-gpu_target_srcm_blur
gpu_target_dstm_blur = nn.gaussian_blur(gpu_target_dstm, max(1, resolution // 32) )
gpu_target_dstm_style_blur = gpu_target_dstm_blur #default style mask is 0.5 on boundary
gpu_target_dstm_style_anti_blur = 1.0 - gpu_target_dstm_style_blur
gpu_target_dstm_blur = tf.clip_by_value(gpu_target_dstm_blur, 0, 0.5) * 2
gpu_target_dstm_anti_blur = 1.0-gpu_target_dstm_blur
gpu_target_dst_masked = gpu_target_dst*gpu_target_dstm_blur
gpu_target_dst_style_masked = gpu_target_dst*gpu_target_dstm_style_blur
gpu_target_dst_style_anti_masked = gpu_target_dst*(1.0 - gpu_target_dstm_style_blur)
gpu_target_dst_style_anti_masked = gpu_target_dst*gpu_target_dstm_style_anti_blur
gpu_target_src_anti_masked = gpu_target_src*gpu_target_srcm_anti_blur
gpu_target_dst_anti_masked = gpu_target_dst*gpu_target_dstm_anti_blur
gpu_pred_src_src_anti_masked = gpu_pred_src_src*gpu_target_srcm_anti_blur
gpu_pred_dst_dst_anti_masked = gpu_pred_dst_dst*gpu_target_dstm_anti_blur
gpu_target_src_anti_masked = gpu_target_src*(1.0-gpu_target_srcm_blur)
gpu_target_src_masked_opt = gpu_target_src*gpu_target_srcm_blur if masked_training else gpu_target_src
gpu_target_dst_masked_opt = gpu_target_dst_masked if masked_training else gpu_target_dst
gpu_pred_src_src_masked_opt = gpu_pred_src_src*gpu_target_srcm_blur if masked_training else gpu_pred_src_src
gpu_pred_src_src_anti_masked = gpu_pred_src_src*(1.0-gpu_target_srcm_blur)
gpu_pred_dst_dst_masked_opt = gpu_pred_dst_dst*gpu_target_dstm_blur if masked_training else gpu_pred_dst_dst
gpu_psd_target_dst_style_masked = gpu_pred_src_dst*gpu_target_dstm_style_blur
gpu_psd_target_dst_style_anti_masked = gpu_pred_src_dst*(1.0 - gpu_target_dstm_style_blur)
gpu_psd_target_dst_style_anti_masked = gpu_pred_src_dst*gpu_target_dstm_style_anti_blur
if self.options['loss_function'] == 'MS-SSIM':
gpu_src_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0)
@ -512,7 +545,8 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
face_style_power = self.options['face_style_power'] / 100.0
if face_style_power != 0 and not self.pretrain:
gpu_src_loss += nn.style_loss(gpu_psd_target_dst_style_masked, gpu_target_dst_style_masked, gaussian_blur_radius=resolution//16, loss_weight=10000*face_style_power)
gpu_src_loss += nn.style_loss(gpu_pred_src_dst_no_code_grad*tf.stop_gradient(gpu_pred_src_dstm), tf.stop_gradient(gpu_pred_dst_dst*gpu_pred_dst_dstm), gaussian_blur_radius=resolution//8, loss_weight=10000*face_style_power)
#gpu_src_loss += nn.style_loss(gpu_psd_target_dst_style_masked, gpu_target_dst_style_masked, gaussian_blur_radius=resolution//16, loss_weight=10000*face_style_power)
bg_style_power = self.options['bg_style_power'] / 100.0
if bg_style_power != 0 and not self.pretrain:
@ -532,7 +566,6 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
gpu_dst_loss += tf.reduce_mean ( 5*nn.dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/23.2) ), axis=[1])
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dst_masked_opt- gpu_pred_dst_dst_masked_opt ), axis=[1,2,3])
if eyes_prio or mouth_prio:
if eyes_prio and mouth_prio:
gpu_target_part_mask = gpu_target_dstm_eye_mouth
@ -566,6 +599,9 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
gpu_G_loss = gpu_src_loss + gpu_dst_loss
if learn_dst_bg and masked_training and 'liae' in archi_type:
gpu_G_loss += tf.reduce_mean( tf.square(gpu_pred_dst_dst_no_code_grad*gpu_target_dstm_anti_blur-gpu_target_dst_anti_masked),axis=[1,2,3] )
def DLoss(labels,logits):
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=logits), axis=[1,2,3])
@ -750,7 +786,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
random_ct_samples_path=training_data_dst_path if ct_mode is not None and not self.pretrain else None
cpu_count = min(multiprocessing.cpu_count(), 8)
cpu_count = multiprocessing.cpu_count()
src_generators_count = cpu_count // 2
dst_generators_count = cpu_count // 2
if ct_mode is not None:
@ -802,11 +838,15 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
if self.pretrain_just_disabled:
self.update_sample_for_preview(force_new=True)
def dump_ckpt(self):
def export_dfm (self):
output_path=self.get_strpath_storage_for_file('model.dfm')
io.log_info(f'Dumping .dfm to {output_path}')
tf = nn.tf
nn.set_data_format('NCHW')
with tf.device ('/CPU:0'):
with tf.device (nn.tf_default_device_name):
warped_dst = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face')
warped_dst = tf.transpose(warped_dst, (0,3,1,2))
@ -830,14 +870,25 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
gpu_pred_dst_dstm = tf.transpose(gpu_pred_dst_dstm, (0,2,3,1))
gpu_pred_src_dstm = tf.transpose(gpu_pred_src_dstm, (0,2,3,1))
saver = tf.train.Saver()
tf.identity(gpu_pred_dst_dstm, name='out_face_mask')
tf.identity(gpu_pred_src_dst, name='out_celeb_face')
tf.identity(gpu_pred_src_dstm, name='out_celeb_face_mask')
saver.save(nn.tf_sess, self.get_strpath_storage_for_file('.ckpt') )
output_graph_def = tf.graph_util.convert_variables_to_constants(
nn.tf_sess,
tf.get_default_graph().as_graph_def(),
['out_face_mask','out_celeb_face','out_celeb_face_mask']
)
import tf2onnx
with tf.device("/CPU:0"):
model_proto, _ = tf2onnx.convert._convert_common(
output_graph_def,
name='SAEHD',
input_names=['in_face:0'],
output_names=['out_face_mask:0','out_celeb_face:0','out_celeb_face_mask:0'],
opset=9,
output_path=output_path)
#override
def get_model_filename_list(self):
@ -892,7 +943,6 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
self.D_src_dst_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
#override
def onGetPreview(self, samples):
( (warped_src, target_src, target_srcm, target_srcm_em),

View file

@ -25,17 +25,24 @@ class XSegModel(ModelBase):
self.set_iter(0)
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'wf')
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False)
if self.is_first_run():
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head'], help_message="Half / mid face / full face / whole face / head. Choose the same as your deepfake model.").lower()
if self.is_first_run() or ask_override:
self.ask_batch_size(4, range=[2,16])
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain)
if not self.is_exporting and (self.options['pretrain'] and self.get_pretraining_data_path() is None):
raise Exception("pretraining_data_path is not defined")
self.pretrain_just_disabled = (default_pretrain == True and self.options['pretrain'] == False)
#override
def on_initialize(self):
device_config = nn.getCurrentDeviceConfig()
self.model_data_format = "NCHW" if len(device_config.devices) != 0 and not self.is_debug() else "NHWC"
self.model_data_format = "NCHW" if self.is_exporting or (len(device_config.devices) != 0 and not self.is_debug()) else "NHWC"
nn.initialize(data_format=self.model_data_format)
tf = nn.tf
@ -51,6 +58,7 @@ class XSegModel(ModelBase):
'wf' : FaceType.WHOLE_FACE,
'head' : FaceType.HEAD}[ self.options['face_type'] ]
place_model_on_cpu = len(devices) == 0
models_opt_device = '/CPU:0' if place_model_on_cpu else nn.tf_default_device_name
@ -67,13 +75,16 @@ class XSegModel(ModelBase):
optimizer=nn.RMSprop(lr=0.0001, lr_dropout=0.3, name='opt'),
data_format=nn.data_format)
self.pretrain = self.options['pretrain']
if self.pretrain_just_disabled:
self.set_iter(0)
if self.is_training:
# Adjust batch size for multiple GPU
gpu_count = max(1, len(devices) )
bs_per_gpu = max(1, self.get_batch_size() // gpu_count)
self.set_batch_size( gpu_count*bs_per_gpu)
# Compute losses per GPU
gpu_pred_list = []
@ -81,8 +92,6 @@ class XSegModel(ModelBase):
gpu_loss_gvs = []
for gpu_id in range(gpu_count):
with tf.device(f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
with tf.device(f'/CPU:0'):
# slice on CPU, otherwise all batch data will be transfered to GPU first
@ -91,9 +100,17 @@ class XSegModel(ModelBase):
gpu_target_t = self.model.target_t [batch_slice,:,:,:]
# process model tensors
gpu_pred_logits_t, gpu_pred_t = self.model.flow(gpu_input_t)
gpu_pred_logits_t, gpu_pred_t = self.model.flow(gpu_input_t, pretrain=self.pretrain)
gpu_pred_list.append(gpu_pred_t)
if self.pretrain:
# Structural loss
gpu_loss = tf.reduce_mean (5*nn.dssim(gpu_target_t, gpu_pred_t, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
gpu_loss += tf.reduce_mean (5*nn.dssim(gpu_target_t, gpu_pred_t, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
# Pixel loss
gpu_loss += tf.reduce_mean (10*tf.square(gpu_target_t-gpu_pred_t), axis=[1,2,3])
else:
gpu_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=gpu_target_t, logits=gpu_pred_logits_t), axis=[1,2,3])
gpu_losses += [gpu_loss]
@ -110,6 +127,11 @@ class XSegModel(ModelBase):
# Initializing training and view functions
if self.pretrain:
def train(input_np, target_np):
l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np})
return l
else:
def train(input_np, target_np):
l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np })
return l
@ -125,7 +147,16 @@ class XSegModel(ModelBase):
src_generators_count = cpu_count // 2
dst_generators_count = cpu_count // 2
if self.pretrain:
pretrain_gen = SampleGeneratorFace(self.get_pretraining_data_path(), debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=True),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
uniform_yaw_distribution=False,
generators_count=cpu_count )
self.set_training_data_generators ([pretrain_gen])
else:
srcdst_generator = SampleGeneratorFaceXSeg([self.training_data_src_path, self.training_data_dst_path],
debug=self.is_debug(),
batch_size=self.get_batch_size(),
@ -159,14 +190,19 @@ class XSegModel(ModelBase):
#override
def onTrainOneIter(self):
image_np, mask_np = self.generate_next_samples()[0]
loss = self.train (image_np, mask_np)
image_np, target_np = self.generate_next_samples()[0]
loss = self.train (image_np, target_np)
return ( ('loss', np.mean(loss) ), )
#override
def onGetPreview(self, samples):
def onGetPreview(self, samples, for_history=False):
n_samples = min(4, self.get_batch_size(), 800 // self.resolution )
if self.pretrain:
srcdst_samples, = samples
image_np, mask_np = srcdst_samples
else:
srcdst_samples, src_samples, dst_samples = samples
image_np, mask_np = srcdst_samples
@ -178,11 +214,14 @@ class XSegModel(ModelBase):
result = []
st = []
for i in range(n_samples):
if self.pretrain:
ar = I[i], IM[i]
else:
ar = I[i]*M[i]+0.5*I[i]*(1-M[i])+0.5*green_bg*(1-M[i]), IM[i], I[i]*IM[i]+0.5*I[i]*(1-IM[i]) + 0.5*green_bg*(1-IM[i])
st.append ( np.concatenate ( ar, axis=1) )
result += [ ('XSeg training faces', np.concatenate (st, axis=0 )), ]
if len(src_samples) != 0:
if not self.pretrain and len(src_samples) != 0:
src_np, = src_samples
@ -196,7 +235,7 @@ class XSegModel(ModelBase):
result += [ ('XSeg src faces', np.concatenate (st, axis=0 )), ]
if len(dst_samples) != 0:
if not self.pretrain and len(dst_samples) != 0:
dst_np, = dst_samples
@ -212,4 +251,33 @@ class XSegModel(ModelBase):
return result
def export_dfm (self):
output_path = self.get_strpath_storage_for_file(f'model.onnx')
io.log_info(f'Dumping .onnx to {output_path}')
tf = nn.tf
with tf.device (nn.tf_default_device_name):
input_t = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face')
input_t = tf.transpose(input_t, (0,3,1,2))
_, pred_t = self.model.flow(input_t)
pred_t = tf.transpose(pred_t, (0,2,3,1))
tf.identity(pred_t, name='out_mask')
output_graph_def = tf.graph_util.convert_variables_to_constants(
nn.tf_sess,
tf.get_default_graph().as_graph_def(),
['out_mask']
)
import tf2onnx
with tf.device("/CPU:0"):
model_proto, _ = tf2onnx.convert._convert_common(
output_graph_def,
name='XSeg',
input_names=['in_face:0'],
output_names=['out_mask:0'],
opset=13,
output_path=output_path)
Model = XSegModel

View file

@ -1,6 +1,6 @@
tqdm
numpy==1.19.3
h5py==2.9.0
h5py==2.10.0
opencv-python==4.1.0.25
ffmpeg-python==0.1.17
scikit-image==0.14.2

View file

@ -96,6 +96,7 @@ class SampleProcessor(object):
resolution = opts.get('resolution', None)
if resolution is None:
continue
if resolution not in params_per_resolution:
params_per_resolution[resolution] = imagelib.gen_warp_params(resolution,
sample_process_options.random_flip,
rotation_range=sample_process_options.rotation_range,
@ -118,6 +119,7 @@ class SampleProcessor(object):
random_jpeg = opts.get('random_jpeg', False)
motion_blur = opts.get('motion_blur', None)
gaussian_blur = opts.get('gaussian_blur', None)
denoise_filter = opts.get('denoise_filter', False)
random_bilinear_resize = opts.get('random_bilinear_resize', None)
random_rgb_levels = opts.get('random_rgb_levels', False)
random_hsv_shift = opts.get('random_hsv_shift', False)
@ -166,6 +168,7 @@ class SampleProcessor(object):
img = np.zeros ( sample_bgr.shape[0:2]+(1,), dtype=np.float32)
if sample_face_type == FaceType.MARK_ONLY:
raise NotImplementedError()
mat = LandmarksProcessor.get_transform_mat (sample_landmarks, warp_resolution, face_type)
img = cv2.warpAffine( img, mat, (warp_resolution, warp_resolution), flags=cv2.INTER_LINEAR )
@ -286,7 +289,9 @@ class SampleProcessor(object):
random_mask = sd.random_circle_faded ([resolution,resolution], rnd_state=np.random.RandomState (sample_rnd_seed+4)) if random_circle_mask else None
img = imagelib.apply_random_bilinear_resize(img, *random_bilinear_resize, mask=random_mask,rnd_state=np.random.RandomState (sample_rnd_seed+4) )
if denoise_filter:
d_size = ( (max(*img.shape[:2]) // 128) + 1 )*2 +1
img = cv2.bilateralFilter( np.clip(img*255, 0,255).astype(np.uint8), d_size, 80, 80).astype(np.float32) / 255.0
# Transform from BGR to desired channel_type
if channel_type == SPCT.BGR: