mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-19 13:09:56 -07:00
First Cioscos commit
-Now the code is at the same point of Iperov's one -SAEHD can optionally use fp16 (unstable) -Other loss functions and background power are not available so far -Some bug fix
This commit is contained in:
parent
16aad87bcb
commit
0fe22be204
20 changed files with 909 additions and 589 deletions
|
@ -1,7 +1,137 @@
|
|||
import numpy as np
|
||||
import numpy.linalg as npla
|
||||
import cv2
|
||||
from core import randomex
|
||||
|
||||
def mls_rigid_deformation(vy, vx, p, q, alpha=1.0, eps=1e-8):
|
||||
""" Rigid deformation
|
||||
|
||||
Parameters
|
||||
----------
|
||||
vx, vy: ndarray
|
||||
coordinate grid, generated by np.meshgrid(gridX, gridY)
|
||||
p: ndarray
|
||||
an array with size [n, 2], original control points
|
||||
q: ndarray
|
||||
an array with size [n, 2], final control points
|
||||
alpha: float
|
||||
parameter used by weights
|
||||
eps: float
|
||||
epsilon
|
||||
|
||||
Return
|
||||
------
|
||||
A deformed image.
|
||||
"""
|
||||
# Change (x, y) to (row, col)
|
||||
q = np.ascontiguousarray(q[:, [1, 0]].astype(np.int16))
|
||||
p = np.ascontiguousarray(p[:, [1, 0]].astype(np.int16))
|
||||
|
||||
# Exchange p and q and hence we transform destination pixels to the corresponding source pixels.
|
||||
p, q = q, p
|
||||
|
||||
grow = vx.shape[0] # grid rows
|
||||
gcol = vx.shape[1] # grid cols
|
||||
ctrls = p.shape[0] # control points
|
||||
|
||||
# Compute
|
||||
reshaped_p = p.reshape(ctrls, 2, 1, 1) # [ctrls, 2, 1, 1]
|
||||
reshaped_v = np.vstack((vx.reshape(1, grow, gcol), vy.reshape(1, grow, gcol))) # [2, grow, gcol]
|
||||
|
||||
w = 1.0 / (np.sum((reshaped_p - reshaped_v).astype(np.float32) ** 2, axis=1) + eps) ** alpha # [ctrls, grow, gcol]
|
||||
w /= np.sum(w, axis=0, keepdims=True) # [ctrls, grow, gcol]
|
||||
|
||||
pstar = np.zeros((2, grow, gcol), np.float32)
|
||||
for i in range(ctrls):
|
||||
pstar += w[i] * reshaped_p[i] # [2, grow, gcol]
|
||||
|
||||
vpstar = reshaped_v - pstar # [2, grow, gcol]
|
||||
reshaped_vpstar = vpstar.reshape(2, 1, grow, gcol) # [2, 1, grow, gcol]
|
||||
neg_vpstar_verti = vpstar[[1, 0],...] # [2, grow, gcol]
|
||||
neg_vpstar_verti[1,...] = -neg_vpstar_verti[1,...]
|
||||
reshaped_neg_vpstar_verti = neg_vpstar_verti.reshape(2, 1, grow, gcol) # [2, 1, grow, gcol]
|
||||
mul_right = np.concatenate((reshaped_vpstar, reshaped_neg_vpstar_verti), axis=1) # [2, 2, grow, gcol]
|
||||
reshaped_mul_right = mul_right.reshape(2, 2, grow, gcol) # [2, 2, grow, gcol]
|
||||
|
||||
# Calculate q
|
||||
reshaped_q = q.reshape((ctrls, 2, 1, 1)) # [ctrls, 2, 1, 1]
|
||||
qstar = np.zeros((2, grow, gcol), np.float32)
|
||||
for i in range(ctrls):
|
||||
qstar += w[i] * reshaped_q[i] # [2, grow, gcol]
|
||||
|
||||
temp = np.zeros((grow, gcol, 2), np.float32)
|
||||
for i in range(ctrls):
|
||||
phat = reshaped_p[i] - pstar # [2, grow, gcol]
|
||||
reshaped_phat = phat.reshape(1, 2, grow, gcol) # [1, 2, grow, gcol]
|
||||
reshaped_w = w[i].reshape(1, 1, grow, gcol) # [1, 1, grow, gcol]
|
||||
neg_phat_verti = phat[[1, 0]] # [2, grow, gcol]
|
||||
neg_phat_verti[1] = -neg_phat_verti[1]
|
||||
reshaped_neg_phat_verti = neg_phat_verti.reshape(1, 2, grow, gcol) # [1, 2, grow, gcol]
|
||||
mul_left = np.concatenate((reshaped_phat, reshaped_neg_phat_verti), axis=0) # [2, 2, grow, gcol]
|
||||
|
||||
A = np.matmul((reshaped_w * mul_left).transpose(2, 3, 0, 1),
|
||||
reshaped_mul_right.transpose(2, 3, 0, 1)) # [grow, gcol, 2, 2]
|
||||
|
||||
qhat = reshaped_q[i] - qstar # [2, grow, gcol]
|
||||
reshaped_qhat = qhat.reshape(1, 2, grow, gcol).transpose(2, 3, 0, 1) # [grow, gcol, 1, 2]
|
||||
|
||||
# Get final image transfomer -- 3-D array
|
||||
temp += np.matmul(reshaped_qhat, A).reshape(grow, gcol, 2) # [grow, gcol, 2]
|
||||
|
||||
temp = temp.transpose(2, 0, 1) # [2, grow, gcol]
|
||||
|
||||
normed_temp = np.linalg.norm(temp, axis=0, keepdims=True) # [1, grow, gcol]
|
||||
normed_vpstar = np.linalg.norm(vpstar, axis=0, keepdims=True) # [1, grow, gcol]
|
||||
nan_mask = normed_temp[0]==0
|
||||
|
||||
transformers = np.true_divide(temp, normed_temp, out=np.zeros_like(temp), where= ~nan_mask) * normed_vpstar + qstar
|
||||
# fix nan values
|
||||
nan_mask_flat = np.flatnonzero(nan_mask)
|
||||
nan_mask_anti_flat = np.flatnonzero(~nan_mask)
|
||||
transformers[0][nan_mask] = np.interp(nan_mask_flat, nan_mask_anti_flat, transformers[0][~nan_mask])
|
||||
transformers[1][nan_mask] = np.interp(nan_mask_flat, nan_mask_anti_flat, transformers[1][~nan_mask])
|
||||
|
||||
return transformers
|
||||
|
||||
def gen_pts(W, H, rnd_state=None):
|
||||
|
||||
if rnd_state is None:
|
||||
rnd_state = np.random
|
||||
|
||||
min_pts, max_pts = 4, 16
|
||||
n_pts = rnd_state.randint(min_pts, max_pts)
|
||||
|
||||
min_radius_per = 0.00
|
||||
max_radius_per = 0.10
|
||||
pts = []
|
||||
|
||||
for i in range(max_pts):
|
||||
while True:
|
||||
x, y = rnd_state.randint(W), rnd_state.randint(H)
|
||||
rad = min_radius_per + rnd_state.rand()*(max_radius_per-min_radius_per)
|
||||
|
||||
intersect = False
|
||||
for px,py,prad,_,_ in pts:
|
||||
|
||||
dist = npla.norm([x-px, y-py])
|
||||
if dist <= (rad+prad)*2:
|
||||
intersect = True
|
||||
break
|
||||
if intersect:
|
||||
continue
|
||||
|
||||
angle = rnd_state.rand()*(2*np.pi)
|
||||
x2 = int(x+np.cos(angle)*W*rad)
|
||||
y2 = int(y+np.sin(angle)*H*rad)
|
||||
|
||||
break
|
||||
pts.append( (x,y,rad, x2,y2) )
|
||||
|
||||
pts1 = np.array( [ [pt[0],pt[1]] for pt in pts ] )
|
||||
pts2 = np.array( [ [pt[-2],pt[-1]] for pt in pts ] )
|
||||
|
||||
return pts1, pts2
|
||||
|
||||
def gen_warp_params (w, flip=False, rotation_range=[-2,2], scale_range=[-0.5, 0.5], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05], rnd_state=None ):
|
||||
if rnd_state is None:
|
||||
rnd_state = np.random
|
||||
|
@ -17,22 +147,29 @@ def gen_warp_params (w, flip=False, rotation_range=[-2,2], scale_range=[-0.5, 0.
|
|||
ty = rnd_state.uniform( ty_range[0], ty_range[1] )
|
||||
p_flip = flip and rnd_state.randint(10) < 4
|
||||
|
||||
#random warp by grid
|
||||
#random warp V1
|
||||
cell_size = [ w // (2**i) for i in range(1,4) ] [ rnd_state.randint(3) ]
|
||||
cell_count = w // cell_size + 1
|
||||
|
||||
grid_points = np.linspace( 0, w, cell_count)
|
||||
mapx = np.broadcast_to(grid_points, (cell_count, cell_count)).copy()
|
||||
mapy = mapx.T
|
||||
|
||||
mapx[1:-1,1:-1] = mapx[1:-1,1:-1] + randomex.random_normal( size=(cell_count-2, cell_count-2) )*(cell_size*0.24)
|
||||
mapy[1:-1,1:-1] = mapy[1:-1,1:-1] + randomex.random_normal( size=(cell_count-2, cell_count-2) )*(cell_size*0.24)
|
||||
|
||||
half_cell_size = cell_size // 2
|
||||
|
||||
mapx = cv2.resize(mapx, (w+cell_size,)*2 )[half_cell_size:-half_cell_size,half_cell_size:-half_cell_size].astype(np.float32)
|
||||
mapy = cv2.resize(mapy, (w+cell_size,)*2 )[half_cell_size:-half_cell_size,half_cell_size:-half_cell_size].astype(np.float32)
|
||||
|
||||
##############
|
||||
|
||||
# random warp V2
|
||||
# pts1, pts2 = gen_pts(w, w, rnd_state)
|
||||
# gridX = np.arange(w, dtype=np.int16)
|
||||
# gridY = np.arange(w, dtype=np.int16)
|
||||
# vy, vx = np.meshgrid(gridX, gridY)
|
||||
# drigid = mls_rigid_deformation(vy, vx, pts1, pts2)
|
||||
# mapy, mapx = drigid.astype(np.float32)
|
||||
################
|
||||
|
||||
#random transform
|
||||
random_transform_mat = cv2.getRotationMatrix2D((w // 2, w // 2), rotation, scale)
|
||||
random_transform_mat[:, 2] += (tx*w, ty*w)
|
||||
|
|
|
@ -7,13 +7,20 @@ class DeepFakeArchi(nn.ArchiBase):
|
|||
|
||||
mod None - default
|
||||
'quick'
|
||||
|
||||
opts ''
|
||||
''
|
||||
't'
|
||||
"""
|
||||
def __init__(self, resolution, mod=None, opts=None):
|
||||
def __init__(self, resolution, use_fp16=False, mod=None, opts=None):
|
||||
super().__init__()
|
||||
|
||||
if opts is None:
|
||||
opts = ''
|
||||
|
||||
|
||||
conv_dtype = tf.float16 if use_fp16 else tf.float32
|
||||
|
||||
if mod is None:
|
||||
class Downscale(nn.ModelBase):
|
||||
def __init__(self, in_ch, out_ch, kernel_size=5, *kwargs ):
|
||||
|
@ -23,7 +30,7 @@ class DeepFakeArchi(nn.ArchiBase):
|
|||
super().__init__(*kwargs)
|
||||
|
||||
def on_build(self, *args, **kwargs ):
|
||||
self.conv1 = nn.Conv2D( self.in_ch, self.out_ch, kernel_size=self.kernel_size, strides=2, padding='SAME')
|
||||
self.conv1 = nn.Conv2D( self.in_ch, self.out_ch, kernel_size=self.kernel_size, strides=2, padding='SAME', dtype=conv_dtype)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
|
@ -51,7 +58,7 @@ class DeepFakeArchi(nn.ArchiBase):
|
|||
|
||||
class Upscale(nn.ModelBase):
|
||||
def on_build(self, in_ch, out_ch, kernel_size=3):
|
||||
self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME')
|
||||
self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
|
@ -61,8 +68,8 @@ class DeepFakeArchi(nn.ArchiBase):
|
|||
|
||||
class ResidualBlock(nn.ModelBase):
|
||||
def on_build(self, ch, kernel_size=3):
|
||||
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
|
||||
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
|
||||
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
|
||||
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
|
||||
|
||||
def forward(self, inp):
|
||||
x = self.conv1(inp)
|
||||
|
@ -78,13 +85,41 @@ class DeepFakeArchi(nn.ArchiBase):
|
|||
super().__init__(**kwargs)
|
||||
|
||||
def on_build(self):
|
||||
self.down1 = DownscaleBlock(self.in_ch, self.e_ch, n_downscales=4, kernel_size=5)
|
||||
if 't' in opts:
|
||||
self.down1 = Downscale(self.in_ch, self.e_ch, kernel_size=5)
|
||||
self.res1 = ResidualBlock(self.e_ch)
|
||||
self.down2 = Downscale(self.e_ch, self.e_ch*2, kernel_size=5)
|
||||
self.down3 = Downscale(self.e_ch*2, self.e_ch*4, kernel_size=5)
|
||||
self.down4 = Downscale(self.e_ch*4, self.e_ch*8, kernel_size=5)
|
||||
self.down5 = Downscale(self.e_ch*8, self.e_ch*8, kernel_size=5)
|
||||
self.res5 = ResidualBlock(self.e_ch*8)
|
||||
else:
|
||||
self.down1 = DownscaleBlock(self.in_ch, self.e_ch, n_downscales=4 if 't' not in opts else 5, kernel_size=5)
|
||||
|
||||
def forward(self, inp):
|
||||
return nn.flatten(self.down1(inp))
|
||||
def forward(self, x):
|
||||
if use_fp16:
|
||||
x = tf.cast(x, tf.float16)
|
||||
|
||||
if 't' in opts:
|
||||
x = self.down1(x)
|
||||
x = self.res1(x)
|
||||
x = self.down2(x)
|
||||
x = self.down3(x)
|
||||
x = self.down4(x)
|
||||
x = self.down5(x)
|
||||
x = self.res5(x)
|
||||
else:
|
||||
x = self.down1(x)
|
||||
x = nn.flatten(x)
|
||||
if 'u' in opts:
|
||||
x = nn.pixel_norm(x, axes=-1)
|
||||
|
||||
if use_fp16:
|
||||
x = tf.cast(x, tf.float32)
|
||||
return x
|
||||
|
||||
def get_out_res(self, res):
|
||||
return res // (2**4)
|
||||
return res // ( (2**4) if 't' not in opts else (2**5) )
|
||||
|
||||
def get_out_ch(self):
|
||||
return self.e_ch * 8
|
||||
|
@ -98,58 +133,84 @@ class DeepFakeArchi(nn.ArchiBase):
|
|||
|
||||
def on_build(self):
|
||||
in_ch, ae_ch, ae_out_ch = self.in_ch, self.ae_ch, self.ae_out_ch
|
||||
if 'u' in opts:
|
||||
self.dense_norm = nn.DenseNorm()
|
||||
|
||||
self.dense1 = nn.Dense( in_ch, ae_ch )
|
||||
self.dense2 = nn.Dense( ae_ch, lowest_dense_res * lowest_dense_res * ae_out_ch )
|
||||
if 't' not in opts:
|
||||
self.upscale1 = Upscale(ae_out_ch, ae_out_ch)
|
||||
|
||||
def forward(self, inp):
|
||||
x = inp
|
||||
if 'u' in opts:
|
||||
x = self.dense_norm(x)
|
||||
x = self.dense1(x)
|
||||
x = self.dense2(x)
|
||||
x = nn.reshape_4D (x, lowest_dense_res, lowest_dense_res, self.ae_out_ch)
|
||||
|
||||
if use_fp16:
|
||||
x = tf.cast(x, tf.float16)
|
||||
|
||||
if 't' not in opts:
|
||||
x = self.upscale1(x)
|
||||
|
||||
return x
|
||||
|
||||
def get_out_res(self):
|
||||
return lowest_dense_res * 2
|
||||
return lowest_dense_res * 2 if 't' not in opts else lowest_dense_res
|
||||
|
||||
def get_out_ch(self):
|
||||
return self.ae_out_ch
|
||||
|
||||
class Decoder(nn.ModelBase):
|
||||
def on_build(self, in_ch, d_ch, d_mask_ch):
|
||||
if 't' not in opts:
|
||||
self.upscale0 = Upscale(in_ch, d_ch*8, kernel_size=3)
|
||||
self.upscale1 = Upscale(d_ch*8, d_ch*4, kernel_size=3)
|
||||
self.upscale2 = Upscale(d_ch*4, d_ch*2, kernel_size=3)
|
||||
|
||||
self.res0 = ResidualBlock(d_ch*8, kernel_size=3)
|
||||
self.res1 = ResidualBlock(d_ch*4, kernel_size=3)
|
||||
self.res2 = ResidualBlock(d_ch*2, kernel_size=3)
|
||||
|
||||
self.out_conv = nn.Conv2D( d_ch*2, 3, kernel_size=1, padding='SAME')
|
||||
|
||||
self.upscalem0 = Upscale(in_ch, d_mask_ch*8, kernel_size=3)
|
||||
self.upscalem1 = Upscale(d_mask_ch*8, d_mask_ch*4, kernel_size=3)
|
||||
self.upscalem2 = Upscale(d_mask_ch*4, d_mask_ch*2, kernel_size=3)
|
||||
self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME')
|
||||
|
||||
self.out_conv = nn.Conv2D( d_ch*2, 3, kernel_size=1, padding='SAME', dtype=conv_dtype)
|
||||
|
||||
if 'd' in opts:
|
||||
self.out_conv1 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME')
|
||||
self.out_conv2 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME')
|
||||
self.out_conv3 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME')
|
||||
self.out_conv1 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
|
||||
self.out_conv2 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
|
||||
self.out_conv3 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
|
||||
self.upscalem3 = Upscale(d_mask_ch*2, d_mask_ch*1, kernel_size=3)
|
||||
self.out_convm = nn.Conv2D( d_mask_ch*1, 1, kernel_size=1, padding='SAME')
|
||||
self.out_convm = nn.Conv2D( d_mask_ch*1, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
|
||||
else:
|
||||
self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME')
|
||||
self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
|
||||
else:
|
||||
self.upscale0 = Upscale(in_ch, d_ch*8, kernel_size=3)
|
||||
self.upscale1 = Upscale(d_ch*8, d_ch*8, kernel_size=3)
|
||||
self.upscale2 = Upscale(d_ch*8, d_ch*4, kernel_size=3)
|
||||
self.upscale3 = Upscale(d_ch*4, d_ch*2, kernel_size=3)
|
||||
self.res0 = ResidualBlock(d_ch*8, kernel_size=3)
|
||||
self.res1 = ResidualBlock(d_ch*8, kernel_size=3)
|
||||
self.res2 = ResidualBlock(d_ch*4, kernel_size=3)
|
||||
self.res3 = ResidualBlock(d_ch*2, kernel_size=3)
|
||||
|
||||
def forward(self, inp):
|
||||
z = inp
|
||||
self.upscalem0 = Upscale(in_ch, d_mask_ch*8, kernel_size=3)
|
||||
self.upscalem1 = Upscale(d_mask_ch*8, d_mask_ch*8, kernel_size=3)
|
||||
self.upscalem2 = Upscale(d_mask_ch*8, d_mask_ch*4, kernel_size=3)
|
||||
self.upscalem3 = Upscale(d_mask_ch*4, d_mask_ch*2, kernel_size=3)
|
||||
self.out_conv = nn.Conv2D( d_ch*2, 3, kernel_size=1, padding='SAME', dtype=conv_dtype)
|
||||
|
||||
if 'd' in opts:
|
||||
self.out_conv1 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
|
||||
self.out_conv2 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
|
||||
self.out_conv3 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
|
||||
self.upscalem4 = Upscale(d_mask_ch*2, d_mask_ch*1, kernel_size=3)
|
||||
self.out_convm = nn.Conv2D( d_mask_ch*1, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
|
||||
else:
|
||||
self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
|
||||
|
||||
|
||||
|
||||
def forward(self, z):
|
||||
x = self.upscale0(z)
|
||||
x = self.res0(x)
|
||||
x = self.upscale1(x)
|
||||
|
@ -157,40 +218,15 @@ class DeepFakeArchi(nn.ArchiBase):
|
|||
x = self.upscale2(x)
|
||||
x = self.res2(x)
|
||||
|
||||
if 't' in opts:
|
||||
x = self.upscale3(x)
|
||||
x = self.res3(x)
|
||||
|
||||
if 'd' in opts:
|
||||
x0 = tf.nn.sigmoid(self.out_conv(x))
|
||||
x0 = nn.upsample2d(x0)
|
||||
x1 = tf.nn.sigmoid(self.out_conv1(x))
|
||||
x1 = nn.upsample2d(x1)
|
||||
x2 = tf.nn.sigmoid(self.out_conv2(x))
|
||||
x2 = nn.upsample2d(x2)
|
||||
x3 = tf.nn.sigmoid(self.out_conv3(x))
|
||||
x3 = nn.upsample2d(x3)
|
||||
|
||||
if nn.data_format == "NHWC":
|
||||
tile_cfg = ( 1, resolution // 2, resolution //2, 1)
|
||||
else:
|
||||
tile_cfg = ( 1, 1, resolution // 2, resolution //2 )
|
||||
|
||||
z0 = tf.concat ( ( tf.concat ( ( tf.ones ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ),
|
||||
tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] )
|
||||
|
||||
z0 = tf.tile ( z0, tile_cfg )
|
||||
|
||||
z1 = tf.concat ( ( tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.ones ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ),
|
||||
tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] )
|
||||
z1 = tf.tile ( z1, tile_cfg )
|
||||
|
||||
z2 = tf.concat ( ( tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ),
|
||||
tf.concat ( ( tf.ones ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] )
|
||||
z2 = tf.tile ( z2, tile_cfg )
|
||||
|
||||
z3 = tf.concat ( ( tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ),
|
||||
tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.ones ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] )
|
||||
z3 = tf.tile ( z3, tile_cfg )
|
||||
|
||||
x = x0*z0 + x1*z1 + x2*z2 + x3*z3
|
||||
x = tf.nn.sigmoid( nn.depth_to_space(tf.concat( (self.out_conv(x),
|
||||
self.out_conv1(x),
|
||||
self.out_conv2(x),
|
||||
self.out_conv3(x)), nn.conv2d_ch_axis), 2) )
|
||||
else:
|
||||
x = tf.nn.sigmoid(self.out_conv(x))
|
||||
|
||||
|
@ -198,10 +234,21 @@ class DeepFakeArchi(nn.ArchiBase):
|
|||
m = self.upscalem0(z)
|
||||
m = self.upscalem1(m)
|
||||
m = self.upscalem2(m)
|
||||
|
||||
if 't' in opts:
|
||||
m = self.upscalem3(m)
|
||||
if 'd' in opts:
|
||||
m = self.upscalem4(m)
|
||||
else:
|
||||
if 'd' in opts:
|
||||
m = self.upscalem3(m)
|
||||
|
||||
m = tf.nn.sigmoid(self.out_convm(m))
|
||||
|
||||
if use_fp16:
|
||||
x = tf.cast(x, tf.float32)
|
||||
m = tf.cast(m, tf.float32)
|
||||
|
||||
return x, m
|
||||
|
||||
self.Encoder = Encoder
|
||||
|
|
|
@ -55,8 +55,8 @@ class Conv2D(nn.LayerBase):
|
|||
if kernel_initializer is None:
|
||||
kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
|
||||
|
||||
if kernel_initializer is None:
|
||||
kernel_initializer = nn.initializers.ca()
|
||||
#if kernel_initializer is None:
|
||||
#kernel_initializer = nn.initializers.ca()
|
||||
|
||||
self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.in_ch,self.out_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )
|
||||
|
||||
|
|
|
@ -38,8 +38,9 @@ class Conv2DTranspose(nn.LayerBase):
|
|||
if kernel_initializer is None:
|
||||
kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
|
||||
|
||||
if kernel_initializer is None:
|
||||
kernel_initializer = nn.initializers.ca()
|
||||
#if kernel_initializer is None:
|
||||
#kernel_initializer = nn.initializers.ca()
|
||||
|
||||
self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.out_ch,self.in_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )
|
||||
|
||||
if self.use_bias:
|
||||
|
|
|
@ -68,8 +68,8 @@ class DepthwiseConv2D(nn.LayerBase):
|
|||
if kernel_initializer is None:
|
||||
kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
|
||||
|
||||
if kernel_initializer is None:
|
||||
kernel_initializer = nn.initializers.ca()
|
||||
#if kernel_initializer is None:
|
||||
#kernel_initializer = nn.initializers.ca()
|
||||
|
||||
self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.in_ch,self.depth_multiplier), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )
|
||||
|
||||
|
|
|
@ -46,7 +46,9 @@ class Saveable():
|
|||
raise Exception("name must be defined.")
|
||||
|
||||
name = self.name
|
||||
for w, w_val in zip(weights, nn.tf_sess.run (weights)):
|
||||
|
||||
for w in weights:
|
||||
w_val = nn.tf_sess.run (w).copy()
|
||||
w_name_split = w.name.split('/', 1)
|
||||
if name != w_name_split[0]:
|
||||
raise Exception("weight first name != Saveable.name")
|
||||
|
|
|
@ -212,7 +212,9 @@ def gaussian_blur(input, radius=2.0):
|
|||
return np.exp(-(float(x) - float(mu)) ** 2 / (2 * sigma ** 2))
|
||||
|
||||
def make_kernel(sigma):
|
||||
kernel_size = max(3, int(2 * 2 * sigma + 1))
|
||||
kernel_size = max(3, int(2 * 2 * sigma))
|
||||
if kernel_size % 2 == 0:
|
||||
kernel_size += 1
|
||||
mean = np.floor(0.5 * kernel_size)
|
||||
kernel_1d = np.array([gaussian(x, mean, sigma) for x in range(kernel_size)])
|
||||
np_kernel = np.outer(kernel_1d, kernel_1d).astype(np.float32)
|
||||
|
@ -237,19 +239,6 @@ def gaussian_blur(input, radius=2.0):
|
|||
return x
|
||||
nn.gaussian_blur = gaussian_blur
|
||||
|
||||
def get_gaussian_weights(batch_size, in_ch, resolution, num_scale=5, sigma=(0.5, 1., 2., 4., 8.)):
|
||||
w = np.empty((num_scale, batch_size, in_ch, resolution, resolution))
|
||||
for i in range(num_scale):
|
||||
gaussian = np.exp(-1.*np.arange(-(resolution/2-0.5), resolution/2+0.5)**2/(2*sigma[i]**2))
|
||||
gaussian = np.outer(gaussian, gaussian.reshape((resolution, 1))) # extend to 2D
|
||||
gaussian = gaussian/np.sum(gaussian) # normalization
|
||||
gaussian = np.reshape(gaussian, (1, 1, resolution, resolution)) # reshape to 3D
|
||||
gaussian = np.tile(gaussian, (batch_size, in_ch, 1, 1))
|
||||
w[i, :, :, :, :] = gaussian
|
||||
return w
|
||||
|
||||
nn.get_gaussian_weights = get_gaussian_weights
|
||||
|
||||
def style_loss(target, style, gaussian_blur_radius=0.0, loss_weight=1.0, step_size=1):
|
||||
def sd(content, style, loss_weight):
|
||||
content_nc = content.shape[ nn.conv2d_ch_axis ]
|
||||
|
@ -416,3 +405,68 @@ def tf_suppress_lower_mean(t, eps=0.00001):
|
|||
q = q * (t/eps)
|
||||
return q
|
||||
"""
|
||||
|
||||
|
||||
|
||||
def _get_pixel_value(img, x, y):
|
||||
shape = tf.shape(x)
|
||||
batch_size = shape[0]
|
||||
height = shape[1]
|
||||
width = shape[2]
|
||||
|
||||
batch_idx = tf.range(0, batch_size)
|
||||
batch_idx = tf.reshape(batch_idx, (batch_size, 1, 1))
|
||||
b = tf.tile(batch_idx, (1, height, width))
|
||||
|
||||
indices = tf.stack([b, y, x], 3)
|
||||
|
||||
return tf.gather_nd(img, indices)
|
||||
|
||||
def bilinear_sampler(img, x, y):
|
||||
H = tf.shape(img)[1]
|
||||
W = tf.shape(img)[2]
|
||||
H_MAX = tf.cast(H - 1, tf.int32)
|
||||
W_MAX = tf.cast(W - 1, tf.int32)
|
||||
|
||||
# grab 4 nearest corner points for each (x_i, y_i)
|
||||
x0 = tf.cast(tf.floor(x), tf.int32)
|
||||
x1 = x0 + 1
|
||||
y0 = tf.cast(tf.floor(y), tf.int32)
|
||||
y1 = y0 + 1
|
||||
|
||||
# clip to range [0, H-1/W-1] to not violate img boundaries
|
||||
x0 = tf.clip_by_value(x0, 0, W_MAX)
|
||||
x1 = tf.clip_by_value(x1, 0, W_MAX)
|
||||
y0 = tf.clip_by_value(y0, 0, H_MAX)
|
||||
y1 = tf.clip_by_value(y1, 0, H_MAX)
|
||||
|
||||
# get pixel value at corner coords
|
||||
Ia = _get_pixel_value(img, x0, y0)
|
||||
Ib = _get_pixel_value(img, x0, y1)
|
||||
Ic = _get_pixel_value(img, x1, y0)
|
||||
Id = _get_pixel_value(img, x1, y1)
|
||||
|
||||
# recast as float for delta calculation
|
||||
x0 = tf.cast(x0, tf.float32)
|
||||
x1 = tf.cast(x1, tf.float32)
|
||||
y0 = tf.cast(y0, tf.float32)
|
||||
y1 = tf.cast(y1, tf.float32)
|
||||
|
||||
# calculate deltas
|
||||
wa = (x1-x) * (y1-y)
|
||||
wb = (x1-x) * (y-y0)
|
||||
wc = (x-x0) * (y1-y)
|
||||
wd = (x-x0) * (y-y0)
|
||||
|
||||
# add dimension for addition
|
||||
wa = tf.expand_dims(wa, axis=3)
|
||||
wb = tf.expand_dims(wb, axis=3)
|
||||
wc = tf.expand_dims(wc, axis=3)
|
||||
wd = tf.expand_dims(wd, axis=3)
|
||||
|
||||
# compute output
|
||||
out = tf.add_n([wa*Ia, wb*Ib, wc*Ic, wd*Id])
|
||||
|
||||
return out
|
||||
|
||||
nn.bilinear_sampler = bilinear_sampler
|
||||
|
|
|
@ -50,11 +50,11 @@ class AdaBelief(nn.OptimizerBase):
|
|||
updates = []
|
||||
|
||||
if self.clipnorm > 0.0:
|
||||
norm = tf.sqrt( sum([tf.reduce_sum(tf.square(g)) for g,v in grads_vars]))
|
||||
norm = tf.sqrt( sum([tf.reduce_sum(tf.square(tf.cast(g, tf.float32))) for g,v in grads_vars]))
|
||||
updates += [ state_ops.assign_add( self.iterations, 1) ]
|
||||
for i, (g,v) in enumerate(grads_vars):
|
||||
if self.clipnorm > 0.0:
|
||||
g = self.tf_clip_norm(g, self.clipnorm, norm)
|
||||
g = self.tf_clip_norm(g, self.clipnorm, tf.cast(norm, g.dtype) )
|
||||
|
||||
ms = self.ms_dict[ v.name ]
|
||||
vs = self.vs_dict[ v.name ]
|
||||
|
|
|
@ -47,11 +47,11 @@ class RMSprop(nn.OptimizerBase):
|
|||
updates = []
|
||||
|
||||
if self.clipnorm > 0.0:
|
||||
norm = tf.sqrt( sum([tf.reduce_sum(tf.square(g)) for g,v in grads_vars]))
|
||||
norm = tf.sqrt( sum([tf.reduce_sum(tf.square(tf.cast(g, tf.float32))) for g,v in grads_vars]))
|
||||
updates += [ state_ops.assign_add( self.iterations, 1) ]
|
||||
for i, (g,v) in enumerate(grads_vars):
|
||||
if self.clipnorm > 0.0:
|
||||
g = self.tf_clip_norm(g, self.clipnorm, norm)
|
||||
g = self.tf_clip_norm(g, self.clipnorm, tf.cast(norm, g.dtype) )
|
||||
|
||||
a = self.accumulators_dict[ v.name ]
|
||||
|
||||
|
|
10
main.py
10
main.py
|
@ -153,6 +153,16 @@ if __name__ == "__main__":
|
|||
p.add_argument('--execute-program', dest="execute_program", default=[], action='append', nargs='+')
|
||||
p.set_defaults (func=process_train)
|
||||
|
||||
def process_exportdfm(arguments):
|
||||
osex.set_process_lowest_prio()
|
||||
from mainscripts import ExportDFM
|
||||
ExportDFM.main(model_class_name = arguments.model_name, saved_models_path = Path(arguments.model_dir))
|
||||
|
||||
p = subparsers.add_parser( "exportdfm", help="Export model to use in DeepFaceLive.")
|
||||
p.add_argument('--model-dir', required=True, action=fixPathAction, dest="model_dir", help="Saved models dir.")
|
||||
p.add_argument('--model', required=True, dest="model_name", choices=pathex.get_all_dir_names_startswith ( Path(__file__).parent / 'models' , 'Model_'), help="Model class name.")
|
||||
p.set_defaults (func=process_exportdfm)
|
||||
|
||||
def process_merge(arguments):
|
||||
osex.set_process_lowest_prio()
|
||||
from mainscripts import Merger
|
||||
|
|
|
@ -166,7 +166,7 @@ class FacesetResizerSubprocessor(Subprocessor):
|
|||
|
||||
def process_folder ( dirpath):
|
||||
|
||||
image_size = io.input_int(f"New image size", 512, valid_range=[256,2048])
|
||||
image_size = io.input_int(f"New image size", 512, valid_range=[128,2048])
|
||||
|
||||
face_type = io.input_str ("Change face type", 'same', ['h','mf','f','wf','head','same']).lower()
|
||||
if face_type == 'same':
|
||||
|
|
|
@ -49,6 +49,7 @@ def main (model_class_name=None,
|
|||
model = models.import_model(model_class_name)(is_training=False,
|
||||
saved_models_path=saved_models_path,
|
||||
force_gpu_idxs=force_gpu_idxs,
|
||||
force_model_name=force_model_name,
|
||||
cpu_only=cpu_only)
|
||||
|
||||
predictor_func, predictor_input_shape, cfg = model.get_MergerConfig()
|
||||
|
|
|
@ -36,7 +36,7 @@ def trainerThread (s2c, c2s, e,
|
|||
try:
|
||||
start_time = time.time()
|
||||
|
||||
save_interval_min = 15
|
||||
save_interval_min = 25
|
||||
|
||||
if not training_data_src_path.exists():
|
||||
training_data_src_path.mkdir(exist_ok=True, parents=True)
|
||||
|
|
|
@ -23,6 +23,7 @@ from samplelib import SampleGeneratorBase
|
|||
|
||||
class ModelBase(object):
|
||||
def __init__(self, is_training=False,
|
||||
is_exporting=False,
|
||||
saved_models_path=None,
|
||||
training_data_src_path=None,
|
||||
training_data_dst_path=None,
|
||||
|
@ -37,6 +38,7 @@ class ModelBase(object):
|
|||
silent_start=False,
|
||||
**kwargs):
|
||||
self.is_training = is_training
|
||||
self.is_exporting = is_exporting
|
||||
self.saved_models_path = saved_models_path
|
||||
self.training_data_src_path = training_data_src_path
|
||||
self.training_data_dst_path = training_data_dst_path
|
||||
|
@ -234,7 +236,7 @@ class ModelBase(object):
|
|||
preview_id_counter = 0
|
||||
while not choosed:
|
||||
self.sample_for_preview = self.generate_next_samples()
|
||||
previews = self.get_static_previews()
|
||||
previews = self.get_history_previews()
|
||||
|
||||
io.show_image( wnd_name, ( previews[preview_id_counter % len(previews) ][1] *255).astype(np.uint8) )
|
||||
|
||||
|
@ -260,7 +262,7 @@ class ModelBase(object):
|
|||
self.sample_for_preview = self.generate_next_samples()
|
||||
|
||||
try:
|
||||
self.get_static_previews()
|
||||
self.get_history_previews()
|
||||
except:
|
||||
self.sample_for_preview = self.generate_next_samples()
|
||||
|
||||
|
@ -357,7 +359,7 @@ class ModelBase(object):
|
|||
return ( ('loss_src', 0), ('loss_dst', 0) )
|
||||
|
||||
#overridable
|
||||
def onGetPreview(self, sample):
|
||||
def onGetPreview(self, sample, for_history=False):
|
||||
#you can return multiple previews
|
||||
#return [ ('preview_name',preview_rgb), ... ]
|
||||
return []
|
||||
|
@ -390,6 +392,9 @@ class ModelBase(object):
|
|||
def get_static_previews(self):
|
||||
return self.onGetPreview (self.sample_for_preview)
|
||||
|
||||
def get_history_previews(self):
|
||||
return self.onGetPreview (self.sample_for_preview, for_history=True)
|
||||
|
||||
def get_preview_history_writer(self):
|
||||
if self.preview_history_writer is None:
|
||||
self.preview_history_writer = PreviewHistoryWriter()
|
||||
|
|
|
@ -16,39 +16,25 @@ class AMPModel(ModelBase):
|
|||
|
||||
#override
|
||||
def on_initialize_options(self):
|
||||
device_config = nn.getCurrentDeviceConfig()
|
||||
|
||||
lowest_vram = 2
|
||||
if len(device_config.devices) != 0:
|
||||
lowest_vram = device_config.devices.get_worst_device().total_mem_gb
|
||||
|
||||
if lowest_vram >= 4:
|
||||
suggest_batch_size = 8
|
||||
else:
|
||||
suggest_batch_size = 4
|
||||
|
||||
yn_str = {True:'y',False:'n'}
|
||||
min_res = 64
|
||||
max_res = 640
|
||||
|
||||
default_resolution = self.options['resolution'] = self.load_or_def_option('resolution', 224)
|
||||
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'wf')
|
||||
default_models_opt_on_gpu = self.options['models_opt_on_gpu'] = self.load_or_def_option('models_opt_on_gpu', True)
|
||||
|
||||
default_ae_dims = self.options['ae_dims'] = self.load_or_def_option('ae_dims', 256)
|
||||
default_inter_dims = self.options['inter_dims'] = self.load_or_def_option('inter_dims', 1024)
|
||||
|
||||
default_e_dims = self.options['e_dims'] = self.load_or_def_option('e_dims', 64)
|
||||
default_d_dims = self.options['d_dims'] = self.options.get('d_dims', None)
|
||||
default_d_mask_dims = self.options['d_mask_dims'] = self.options.get('d_mask_dims', None)
|
||||
default_morph_factor = self.options['morph_factor'] = self.options.get('morph_factor', 0.33)
|
||||
default_masked_training = self.options['masked_training'] = self.load_or_def_option('masked_training', True)
|
||||
default_eyes_mouth_prio = self.options['eyes_mouth_prio'] = self.load_or_def_option('eyes_mouth_prio', True)
|
||||
default_morph_factor = self.options['morph_factor'] = self.options.get('morph_factor', 0.5)
|
||||
default_uniform_yaw = self.options['uniform_yaw'] = self.load_or_def_option('uniform_yaw', False)
|
||||
|
||||
lr_dropout = self.load_or_def_option('lr_dropout', 'n')
|
||||
lr_dropout = {True:'y', False:'n'}.get(lr_dropout, lr_dropout) #backward comp
|
||||
default_lr_dropout = self.options['lr_dropout'] = lr_dropout
|
||||
# Uncomment it just if you want to impelement other loss functions
|
||||
#default_loss_function = self.options['loss_function'] = self.load_or_def_option('loss_function', 'SSIM')
|
||||
|
||||
default_loss_function = self.options['loss_function'] = self.load_or_def_option('loss_function', 'SSIM')
|
||||
default_blur_out_mask = self.options['blur_out_mask'] = self.load_or_def_option('blur_out_mask', False)
|
||||
|
||||
default_lr_dropout = self.options['lr_dropout'] = self.load_or_def_option('lr_dropout', 'n')
|
||||
|
||||
default_random_warp = self.options['random_warp'] = self.load_or_def_option('random_warp', True)
|
||||
default_random_downsample = self.options['random_downsample'] = self.load_or_def_option('random_downsample', False)
|
||||
|
@ -56,11 +42,11 @@ class AMPModel(ModelBase):
|
|||
default_random_blur = self.options['random_blur'] = self.load_or_def_option('random_blur', False)
|
||||
default_random_jpeg = self.options['random_jpeg'] = self.load_or_def_option('random_jpeg', False)
|
||||
|
||||
default_background_power = self.options['background_power'] = self.load_or_def_option('background_power', 0.0)
|
||||
# Uncomment it just if you want to impelement other loss functions
|
||||
#default_background_power = self.options['background_power'] = self.load_or_def_option('background_power', 0.0)
|
||||
default_ct_mode = self.options['ct_mode'] = self.load_or_def_option('ct_mode', 'none')
|
||||
default_random_color = self.options['random_color'] = self.load_or_def_option('random_color', False)
|
||||
default_clipgrad = self.options['clipgrad'] = self.load_or_def_option('clipgrad', False)
|
||||
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False)
|
||||
|
||||
|
||||
ask_override = self.ask_override()
|
||||
|
@ -70,13 +56,13 @@ class AMPModel(ModelBase):
|
|||
self.ask_target_iter()
|
||||
self.ask_random_src_flip()
|
||||
self.ask_random_dst_flip()
|
||||
self.ask_batch_size(suggest_batch_size)
|
||||
self.ask_batch_size(8)
|
||||
|
||||
if self.is_first_run():
|
||||
resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 32 .")
|
||||
resolution = np.clip ( (resolution // 32) * 32, min_res, max_res)
|
||||
resolution = np.clip ( (resolution // 32) * 32, 64, 640)
|
||||
self.options['resolution'] = resolution
|
||||
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['wf','head'], help_message="whole face / head").lower()
|
||||
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['f','wf','head'], help_message="whole face / head").lower()
|
||||
|
||||
|
||||
default_d_dims = self.options['d_dims'] = self.load_or_def_option('d_dims', 64)
|
||||
|
@ -87,6 +73,7 @@ class AMPModel(ModelBase):
|
|||
|
||||
if self.is_first_run():
|
||||
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dimensions", default_ae_dims, add_info="32-1024", help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
|
||||
self.options['inter_dims'] = np.clip ( io.input_int("Inter dimensions", default_inter_dims, add_info="32-2048", help_message="Should be equal or more than AutoEncoder dimensions. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 2048 )
|
||||
|
||||
e_dims = np.clip ( io.input_int("Encoder dimensions", default_e_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 )
|
||||
self.options['e_dims'] = e_dims + e_dims % 2
|
||||
|
@ -97,16 +84,16 @@ class AMPModel(ModelBase):
|
|||
d_mask_dims = np.clip ( io.input_int("Decoder mask dimensions", default_d_mask_dims, add_info="16-256", help_message="Typical mask dimensions = decoder dimensions / 3. If you manually cut out obstacles from the dst mask, you can increase this parameter to achieve better quality." ), 16, 256 )
|
||||
self.options['d_mask_dims'] = d_mask_dims + d_mask_dims % 2
|
||||
|
||||
if self.is_first_run() or ask_override:
|
||||
morph_factor = np.clip ( io.input_number ("Morph factor.", default_morph_factor, add_info="0.1 .. 0.5", help_message="The smaller the value, the more src-like facial expressions will appear. The larger the value, the less space there is to train a large dst faceset in the neural network. Typical fine value is 0.33"), 0.1, 0.5 )
|
||||
morph_factor = np.clip ( io.input_number ("Morph factor.", default_morph_factor, add_info="0.1 .. 0.5", help_message="Typical fine value is 0.5"), 0.1, 0.5 )
|
||||
self.options['morph_factor'] = morph_factor
|
||||
|
||||
if self.options['face_type'] == 'wf' or self.options['face_type'] == 'head':
|
||||
self.options['masked_training'] = io.input_bool ("Masked training", default_masked_training, help_message="This option is available only for 'whole_face' or 'head' type. Masked training clips training area to full_face mask or XSeg mask, thus network will train the faces properly.")
|
||||
|
||||
self.options['eyes_mouth_prio'] = io.input_bool ("Eyes and mouth priority", default_eyes_mouth_prio, help_message='Helps to fix eye problems during training like "alien eyes" and wrong eyes direction. Also makes the detail of the teeth higher.')
|
||||
if self.is_first_run() or ask_override:
|
||||
self.options['uniform_yaw'] = io.input_bool ("Uniform yaw distribution of samples", default_uniform_yaw, help_message='Helps to fix blurry side faces due to small amount of them in the faceset.')
|
||||
|
||||
self.options['blur_out_mask'] = io.input_bool ("Blur out mask", default_blur_out_mask, help_message='Blurs nearby area outside of applied face mask of training samples. The result is the background near the face is smoothed and less noticeable on swapped face. The exact xseg mask in src and dst faceset is required.')
|
||||
|
||||
self.options['lr_dropout'] = io.input_str (f"Use learning rate dropout", default_lr_dropout, ['n','y','cpu'], help_message="When the face is trained enough, you can enable this option to get extra sharpness and reduce subpixel shake for less amount of iterations. Enabled it before `disable random warp` and before GAN. \nn - disabled.\ny - enabled\ncpu - enabled on CPU. This allows not to use extra VRAM, sacrificing 20% time of iteration.")
|
||||
|
||||
default_gan_power = self.options['gan_power'] = self.load_or_def_option('gan_power', 0.0)
|
||||
default_gan_patch_size = self.options['gan_patch_size'] = self.load_or_def_option('gan_patch_size', self.options['resolution'] // 8)
|
||||
default_gan_dims = self.options['gan_dims'] = self.load_or_def_option('gan_dims', 16)
|
||||
|
@ -114,37 +101,29 @@ class AMPModel(ModelBase):
|
|||
if self.is_first_run() or ask_override:
|
||||
self.options['models_opt_on_gpu'] = io.input_bool ("Place models and optimizer on GPU", default_models_opt_on_gpu, help_message="When you train on one GPU, by default model and optimizer weights are placed on GPU to accelerate the process. You can place they on CPU to free up extra VRAM, thus set bigger dimensions.")
|
||||
|
||||
self.options['lr_dropout'] = io.input_str (f"Use learning rate dropout", default_lr_dropout, ['n','y','cpu'], help_message="When the face is trained enough, you can enable this option to get extra sharpness and reduce subpixel shake for less amount of iterations. Enabled it before `disable random warp` and before GAN. \nn - disabled.\ny - enabled\ncpu - enabled on CPU. This allows not to use extra VRAM, sacrificing 20% time of iteration.")
|
||||
|
||||
self.options['loss_function'] = io.input_str(f"Loss function", default_loss_function, ['SSIM', 'MS-SSIM', 'MS-SSIM+L1'],
|
||||
help_message="Change loss function used for image quality assessment.")
|
||||
|
||||
self.options['random_warp'] = io.input_bool ("Enable random warp of samples", default_random_warp, help_message="Random warp is required to generalize facial expressions of both faces. When the face is trained enough, you can disable it to get extra sharpness and reduce subpixel shake for less amount of iterations.")
|
||||
|
||||
self.options['random_downsample'] = io.input_bool("Enable random downsample of samples", default_random_downsample, help_message="")
|
||||
self.options['random_noise'] = io.input_bool("Enable random noise added to samples", default_random_noise, help_message="")
|
||||
self.options['random_blur'] = io.input_bool("Enable random blur of samples", default_random_blur, help_message="")
|
||||
self.options['random_jpeg'] = io.input_bool("Enable random jpeg compression of samples", default_random_jpeg, help_message="")
|
||||
|
||||
self.options['gan_power'] = np.clip ( io.input_number ("GAN power", default_gan_power, add_info="0.0 .. 1.0", help_message="Forces the neural network to learn small details of the face. Enable it only when the face is trained enough with lr_dropout(on) and random_warp(off), and don't disable. The higher the value, the higher the chances of artifacts. Typical fine value is 0.1"), 0.0, 1.0 )
|
||||
self.options['gan_power'] = np.clip ( io.input_number ("GAN power", default_gan_power, add_info="0.0 .. 5.0", help_message="Forces the neural network to learn small details of the face. Enable it only when the face is trained enough with random_warp(off), and don't disable. The higher the value, the higher the chances of artifacts. Typical fine value is 0.1"), 0.0, 5.0 )
|
||||
|
||||
if self.options['gan_power'] != 0.0:
|
||||
gan_patch_size = np.clip ( io.input_int("GAN patch size", default_gan_patch_size, add_info="3-640", help_message="The higher patch size, the higher the quality, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is resolution / 8." ), 3, 640 )
|
||||
self.options['gan_patch_size'] = gan_patch_size
|
||||
|
||||
gan_dims = np.clip ( io.input_int("GAN dimensions", default_gan_dims, add_info="4-64", help_message="The dimensions of the GAN network. The higher dimensions, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is 16." ), 4, 64 )
|
||||
gan_dims = np.clip ( io.input_int("GAN dimensions", default_gan_dims, add_info="4-512", help_message="The dimensions of the GAN network. The higher dimensions, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is 16." ), 4, 512 )
|
||||
self.options['gan_dims'] = gan_dims
|
||||
|
||||
self.options['background_power'] = np.clip ( io.input_number("Background power", default_background_power, add_info="0.0..1.0", help_message="Learn the area outside of the mask. Helps smooth out area near the mask boundaries. Can be used at any time"), 0.0, 1.0 )
|
||||
#self.options['background_power'] = np.clip ( io.input_number("Background power", default_background_power, add_info="0.0..1.0", help_message="Learn the area outside of the mask. Helps smooth out area near the mask boundaries. Can be used at any time"), 0.0, 1.0 )
|
||||
|
||||
self.options['ct_mode'] = io.input_str (f"Color transfer for src faceset", default_ct_mode, ['none','rct','lct','mkl','idt','sot', 'fs-aug'], help_message="Change color distribution of src samples close to dst samples. Try all modes to find the best.")
|
||||
self.options['random_color'] = io.input_bool ("Random color", default_random_color, help_message="Samples are randomly rotated around the L axis in LAB colorspace, helps generalize training")
|
||||
|
||||
self.options['clipgrad'] = io.input_bool ("Enable gradient clipping", default_clipgrad, help_message="Gradient clipping reduces chance of model collapse, sacrificing speed of training.")
|
||||
|
||||
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain, help_message="Pretrain the model with large amount of various faces. After that, model can be used to train the fakes more quickly. Forces random_warp=N, random_flips=Y, gan_power=0.0, lr_dropout=N, uniform_yaw=Y")
|
||||
|
||||
self.gan_model_changed = (default_gan_patch_size != self.options['gan_patch_size']) or (default_gan_dims != self.options['gan_dims'])
|
||||
self.pretrain_just_disabled = (default_pretrain == True and self.options['pretrain'] == False)
|
||||
|
||||
#override
|
||||
def on_initialize(self):
|
||||
|
@ -154,42 +133,52 @@ class AMPModel(ModelBase):
|
|||
nn.initialize(data_format=self.model_data_format)
|
||||
tf = nn.tf
|
||||
|
||||
self.resolution = resolution = self.options['resolution']
|
||||
input_ch=3
|
||||
resolution = self.resolution = self.options['resolution']
|
||||
e_dims = self.options['e_dims']
|
||||
ae_dims = self.options['ae_dims']
|
||||
inter_dims = self.inter_dims = self.options['inter_dims']
|
||||
inter_res = self.inter_res = resolution // 32
|
||||
d_dims = self.options['d_dims']
|
||||
d_mask_dims = self.options['d_mask_dims']
|
||||
face_type = self.face_type = {'f' : FaceType.FULL,
|
||||
'wf' : FaceType.WHOLE_FACE,
|
||||
'head' : FaceType.HEAD}[ self.options['face_type'] ]
|
||||
morph_factor = self.options['morph_factor']
|
||||
gan_power = self.gan_power = self.options['gan_power']
|
||||
random_warp = self.options['random_warp']
|
||||
|
||||
lowest_dense_res = self.lowest_dense_res = resolution // 32
|
||||
blur_out_mask = self.options['blur_out_mask']
|
||||
|
||||
ct_mode = self.options['ct_mode']
|
||||
if ct_mode == 'none':
|
||||
ct_mode = None
|
||||
|
||||
use_fp16 = False
|
||||
#if self.is_exporting:
|
||||
#use_fp16 = io.input_bool ("Export quantized?", False, help_message='Makes the exported model faster. If you have problems, disable this option.')
|
||||
|
||||
conv_dtype = tf.float16 if use_fp16 else tf.float32
|
||||
|
||||
class Downscale(nn.ModelBase):
|
||||
def __init__(self, in_ch, out_ch, kernel_size=5, *kwargs ):
|
||||
self.in_ch = in_ch
|
||||
self.out_ch = out_ch
|
||||
self.kernel_size = kernel_size
|
||||
super().__init__(*kwargs)
|
||||
|
||||
def on_build(self, *args, **kwargs ):
|
||||
self.conv1 = nn.Conv2D( self.in_ch, self.out_ch, kernel_size=self.kernel_size, strides=2, padding='SAME')
|
||||
def on_build(self, in_ch, out_ch, kernel_size=5 ):
|
||||
self.conv1 = nn.Conv2D( in_ch, out_ch, kernel_size=kernel_size, strides=2, padding='SAME', dtype=conv_dtype)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = tf.nn.leaky_relu(x, 0.1)
|
||||
return x
|
||||
|
||||
def get_out_ch(self):
|
||||
return self.out_ch
|
||||
return tf.nn.leaky_relu(self.conv1(x), 0.1)
|
||||
|
||||
class Upscale(nn.ModelBase):
|
||||
def on_build(self, in_ch, out_ch, kernel_size=3 ):
|
||||
self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME')
|
||||
self.conv1 = nn.Conv2D(in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = tf.nn.leaky_relu(x, 0.1)
|
||||
x = nn.depth_to_space(x, 2)
|
||||
x = nn.depth_to_space(tf.nn.leaky_relu(self.conv1(x), 0.1), 2)
|
||||
return x
|
||||
|
||||
class ResidualBlock(nn.ModelBase):
|
||||
def on_build(self, ch, kernel_size=3 ):
|
||||
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
|
||||
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
|
||||
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
|
||||
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
|
||||
|
||||
def forward(self, inp):
|
||||
x = self.conv1(inp)
|
||||
|
@ -199,18 +188,19 @@ class AMPModel(ModelBase):
|
|||
return x
|
||||
|
||||
class Encoder(nn.ModelBase):
|
||||
def on_build(self, in_ch, e_ch, ae_ch):
|
||||
self.down1 = Downscale(in_ch, e_ch, kernel_size=5)
|
||||
self.res1 = ResidualBlock(e_ch)
|
||||
self.down2 = Downscale(e_ch, e_ch*2, kernel_size=5)
|
||||
self.down3 = Downscale(e_ch*2, e_ch*4, kernel_size=5)
|
||||
self.down4 = Downscale(e_ch*4, e_ch*8, kernel_size=5)
|
||||
self.down5 = Downscale(e_ch*8, e_ch*8, kernel_size=5)
|
||||
self.res5 = ResidualBlock(e_ch*8)
|
||||
self.dense1 = nn.Dense( lowest_dense_res*lowest_dense_res*e_ch*8, ae_ch )
|
||||
def on_build(self):
|
||||
self.down1 = Downscale(input_ch, e_dims, kernel_size=5)
|
||||
self.res1 = ResidualBlock(e_dims)
|
||||
self.down2 = Downscale(e_dims, e_dims*2, kernel_size=5)
|
||||
self.down3 = Downscale(e_dims*2, e_dims*4, kernel_size=5)
|
||||
self.down4 = Downscale(e_dims*4, e_dims*8, kernel_size=5)
|
||||
self.down5 = Downscale(e_dims*8, e_dims*8, kernel_size=5)
|
||||
self.res5 = ResidualBlock(e_dims*8)
|
||||
self.dense1 = nn.Dense( (( resolution//(2**5) )**2) * e_dims*8, ae_dims )
|
||||
|
||||
def forward(self, inp):
|
||||
x = inp
|
||||
def forward(self, x):
|
||||
if use_fp16:
|
||||
x = tf.cast(x, tf.float16)
|
||||
x = self.down1(x)
|
||||
x = self.res1(x)
|
||||
x = self.down2(x)
|
||||
|
@ -218,56 +208,51 @@ class AMPModel(ModelBase):
|
|||
x = self.down4(x)
|
||||
x = self.down5(x)
|
||||
x = self.res5(x)
|
||||
x = nn.flatten(x)
|
||||
x = nn.pixel_norm(x, axes=-1)
|
||||
if use_fp16:
|
||||
x = tf.cast(x, tf.float32)
|
||||
x = nn.pixel_norm(nn.flatten(x), axes=-1)
|
||||
x = self.dense1(x)
|
||||
return x
|
||||
|
||||
|
||||
class Inter(nn.ModelBase):
|
||||
def __init__(self, ae_ch, ae_out_ch, **kwargs):
|
||||
self.ae_ch, self.ae_out_ch = ae_ch, ae_out_ch
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def on_build(self):
|
||||
ae_ch, ae_out_ch = self.ae_ch, self.ae_out_ch
|
||||
self.dense2 = nn.Dense( ae_ch, lowest_dense_res * lowest_dense_res * ae_out_ch )
|
||||
self.dense2 = nn.Dense(ae_dims, inter_res * inter_res * inter_dims)
|
||||
|
||||
def forward(self, inp):
|
||||
x = inp
|
||||
x = self.dense2(x)
|
||||
x = nn.reshape_4D (x, lowest_dense_res, lowest_dense_res, self.ae_out_ch)
|
||||
x = nn.reshape_4D (x, inter_res, inter_res, inter_dims)
|
||||
return x
|
||||
|
||||
def get_out_ch(self):
|
||||
return self.ae_out_ch
|
||||
|
||||
class Decoder(nn.ModelBase):
|
||||
def on_build(self, in_ch, d_ch, d_mask_ch ):
|
||||
self.upscale0 = Upscale(in_ch, d_ch*8, kernel_size=3)
|
||||
self.upscale1 = Upscale(d_ch*8, d_ch*8, kernel_size=3)
|
||||
self.upscale2 = Upscale(d_ch*8, d_ch*4, kernel_size=3)
|
||||
self.upscale3 = Upscale(d_ch*4, d_ch*2, kernel_size=3)
|
||||
def on_build(self ):
|
||||
self.upscale0 = Upscale(inter_dims, d_dims*8, kernel_size=3)
|
||||
self.upscale1 = Upscale(d_dims*8, d_dims*8, kernel_size=3)
|
||||
self.upscale2 = Upscale(d_dims*8, d_dims*4, kernel_size=3)
|
||||
self.upscale3 = Upscale(d_dims*4, d_dims*2, kernel_size=3)
|
||||
|
||||
self.res0 = ResidualBlock(d_ch*8, kernel_size=3)
|
||||
self.res1 = ResidualBlock(d_ch*8, kernel_size=3)
|
||||
self.res2 = ResidualBlock(d_ch*4, kernel_size=3)
|
||||
self.res3 = ResidualBlock(d_ch*2, kernel_size=3)
|
||||
self.res0 = ResidualBlock(d_dims*8, kernel_size=3)
|
||||
self.res1 = ResidualBlock(d_dims*8, kernel_size=3)
|
||||
self.res2 = ResidualBlock(d_dims*4, kernel_size=3)
|
||||
self.res3 = ResidualBlock(d_dims*2, kernel_size=3)
|
||||
|
||||
self.upscalem0 = Upscale(in_ch, d_mask_ch*8, kernel_size=3)
|
||||
self.upscalem1 = Upscale(d_mask_ch*8, d_mask_ch*8, kernel_size=3)
|
||||
self.upscalem2 = Upscale(d_mask_ch*8, d_mask_ch*4, kernel_size=3)
|
||||
self.upscalem3 = Upscale(d_mask_ch*4, d_mask_ch*2, kernel_size=3)
|
||||
self.upscalem4 = Upscale(d_mask_ch*2, d_mask_ch*1, kernel_size=3)
|
||||
self.out_convm = nn.Conv2D( d_mask_ch*1, 1, kernel_size=1, padding='SAME')
|
||||
self.upscalem0 = Upscale(inter_dims, d_mask_dims*8, kernel_size=3)
|
||||
self.upscalem1 = Upscale(d_mask_dims*8, d_mask_dims*8, kernel_size=3)
|
||||
self.upscalem2 = Upscale(d_mask_dims*8, d_mask_dims*4, kernel_size=3)
|
||||
self.upscalem3 = Upscale(d_mask_dims*4, d_mask_dims*2, kernel_size=3)
|
||||
self.upscalem4 = Upscale(d_mask_dims*2, d_mask_dims*1, kernel_size=3)
|
||||
self.out_convm = nn.Conv2D( d_mask_dims*1, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
|
||||
|
||||
self.out_conv = nn.Conv2D( d_ch*2, 3, kernel_size=1, padding='SAME')
|
||||
self.out_conv1 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME')
|
||||
self.out_conv2 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME')
|
||||
self.out_conv3 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME')
|
||||
self.out_conv = nn.Conv2D( d_dims*2, 3, kernel_size=1, padding='SAME', dtype=conv_dtype)
|
||||
self.out_conv1 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
|
||||
self.out_conv2 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
|
||||
self.out_conv3 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
|
||||
|
||||
def forward(self, inp):
|
||||
z = inp
|
||||
def forward(self, z):
|
||||
if use_fp16:
|
||||
z = tf.cast(z, tf.float16)
|
||||
|
||||
x = self.upscale0(z)
|
||||
x = self.res0(x)
|
||||
|
@ -282,54 +267,22 @@ class AMPModel(ModelBase):
|
|||
self.out_conv1(x),
|
||||
self.out_conv2(x),
|
||||
self.out_conv3(x)), nn.conv2d_ch_axis), 2) )
|
||||
|
||||
m = self.upscalem0(z)
|
||||
m = self.upscalem1(m)
|
||||
m = self.upscalem2(m)
|
||||
m = self.upscalem3(m)
|
||||
m = self.upscalem4(m)
|
||||
m = tf.nn.sigmoid(self.out_convm(m))
|
||||
|
||||
if use_fp16:
|
||||
x = tf.cast(x, tf.float32)
|
||||
m = tf.cast(m, tf.float32)
|
||||
return x, m
|
||||
|
||||
self.face_type = {'wf' : FaceType.WHOLE_FACE,
|
||||
'head' : FaceType.HEAD}[ self.options['face_type'] ]
|
||||
|
||||
if 'eyes_prio' in self.options:
|
||||
self.options.pop('eyes_prio')
|
||||
|
||||
eyes_mouth_prio = self.options['eyes_mouth_prio']
|
||||
|
||||
ae_dims = self.ae_dims = self.options['ae_dims']
|
||||
e_dims = self.options['e_dims']
|
||||
d_dims = self.options['d_dims']
|
||||
d_mask_dims = self.options['d_mask_dims']
|
||||
morph_factor = self.options['morph_factor']
|
||||
|
||||
pretrain = self.pretrain = self.options['pretrain']
|
||||
if self.pretrain_just_disabled:
|
||||
self.set_iter(0)
|
||||
|
||||
self.gan_power = gan_power = 0.0 if self.pretrain else self.options['gan_power']
|
||||
random_warp = False if self.pretrain else self.options['random_warp']
|
||||
random_src_flip = self.random_src_flip if not self.pretrain else True
|
||||
random_dst_flip = self.random_dst_flip if not self.pretrain else True
|
||||
|
||||
if self.pretrain:
|
||||
self.options_show_override['gan_power'] = 0.0
|
||||
self.options_show_override['random_warp'] = False
|
||||
self.options_show_override['lr_dropout'] = 'n'
|
||||
self.options_show_override['uniform_yaw'] = True
|
||||
|
||||
masked_training = self.options['masked_training']
|
||||
ct_mode = self.options['ct_mode']
|
||||
if ct_mode == 'none':
|
||||
ct_mode = None
|
||||
|
||||
models_opt_on_gpu = False if len(devices) == 0 else self.options['models_opt_on_gpu']
|
||||
models_opt_device = nn.tf_default_device_name if models_opt_on_gpu and self.is_training else '/CPU:0'
|
||||
optimizer_vars_on_cpu = models_opt_device=='/CPU:0'
|
||||
|
||||
input_ch=3
|
||||
bgr_shape = self.bgr_shape = nn.get4Dshape(resolution,resolution,input_ch)
|
||||
mask_shape = nn.get4Dshape(resolution,resolution,1)
|
||||
self.model_filename_list = []
|
||||
|
@ -350,12 +303,11 @@ class AMPModel(ModelBase):
|
|||
self.morph_value_t = tf.placeholder (nn.floatx, (1,), name='morph_value_t')
|
||||
|
||||
# Initializing model classes
|
||||
|
||||
with tf.device (models_opt_device):
|
||||
self.encoder = Encoder(in_ch=input_ch, e_ch=e_dims, ae_ch=ae_dims, name='encoder')
|
||||
self.inter_src = Inter(ae_ch=ae_dims, ae_out_ch=ae_dims, name='inter_src')
|
||||
self.inter_dst = Inter(ae_ch=ae_dims, ae_out_ch=ae_dims, name='inter_dst')
|
||||
self.decoder = Decoder(in_ch=ae_dims, d_ch=d_dims, d_mask_ch=d_mask_dims, name='decoder')
|
||||
self.encoder = Encoder(name='encoder')
|
||||
self.inter_src = Inter(name='inter_src')
|
||||
self.inter_dst = Inter(name='inter_dst')
|
||||
self.decoder = Decoder(name='decoder')
|
||||
|
||||
self.model_filename_list += [ [self.encoder, 'encoder.npy'],
|
||||
[self.inter_src, 'inter_src.npy'],
|
||||
|
@ -363,30 +315,25 @@ class AMPModel(ModelBase):
|
|||
[self.decoder , 'decoder.npy'] ]
|
||||
|
||||
if self.is_training:
|
||||
if gan_power != 0:
|
||||
self.GAN = nn.UNetPatchDiscriminator(patch_size=self.options['gan_patch_size'], in_ch=input_ch, base_ch=self.options['gan_dims'], name="GAN")
|
||||
self.model_filename_list += [ [self.GAN, 'GAN.npy'] ]
|
||||
|
||||
# Initialize optimizers
|
||||
lr=5e-5
|
||||
lr_dropout = 0.3 if self.options['lr_dropout'] in ['y','cpu'] and not self.pretrain else 1.0
|
||||
|
||||
clipnorm = 1.0 if self.options['clipgrad'] else 0.0
|
||||
lr_dropout = 0.3 if self.options['lr_dropout'] in ['y','cpu'] else 1.0
|
||||
|
||||
self.all_weights = self.encoder.get_weights() + self.inter_src.get_weights() + self.inter_dst.get_weights() + self.decoder.get_weights()
|
||||
if pretrain:
|
||||
self.trainable_weights = self.encoder.get_weights() + self.inter_dst.get_weights() + self.decoder.get_weights()
|
||||
else:
|
||||
self.trainable_weights = self.encoder.get_weights() + self.inter_src.get_weights() + self.inter_dst.get_weights() + self.decoder.get_weights()
|
||||
self.G_weights = self.encoder.get_weights() + self.decoder.get_weights()
|
||||
|
||||
self.src_dst_opt = nn.AdaBelief(lr=lr, lr_dropout=lr_dropout, clipnorm=clipnorm, name='src_dst_opt')
|
||||
self.src_dst_opt.initialize_variables (self.all_weights, vars_on_cpu=optimizer_vars_on_cpu, lr_dropout_on_cpu=self.options['lr_dropout']=='cpu')
|
||||
#if random_warp:
|
||||
# self.G_weights += self.inter_src.get_weights() + self.inter_dst.get_weights()
|
||||
|
||||
self.src_dst_opt = nn.AdaBelief(lr=5e-5, lr_dropout=lr_dropout, clipnorm=clipnorm, name='src_dst_opt')
|
||||
self.src_dst_opt.initialize_variables (self.G_weights, vars_on_cpu=optimizer_vars_on_cpu)
|
||||
self.model_filename_list += [ (self.src_dst_opt, 'src_dst_opt.npy') ]
|
||||
|
||||
if gan_power != 0:
|
||||
self.GAN_opt = nn.AdaBelief(lr=lr, lr_dropout=lr_dropout, clipnorm=clipnorm, name='GAN_opt')
|
||||
self.GAN_opt.initialize_variables ( self.GAN.get_weights(), vars_on_cpu=optimizer_vars_on_cpu, lr_dropout_on_cpu=self.options['lr_dropout']=='cpu')#+self.D_src_x2.get_weights()
|
||||
self.model_filename_list += [ (self.GAN_opt, 'GAN_opt.npy') ]
|
||||
self.GAN = nn.UNetPatchDiscriminator(patch_size=self.options['gan_patch_size'], in_ch=input_ch, base_ch=self.options['gan_dims'], name="GAN")
|
||||
self.GAN_opt = nn.AdaBelief(lr=5e-5, lr_dropout=lr_dropout, clipnorm=clipnorm, name='GAN_opt')
|
||||
self.GAN_opt.initialize_variables ( self.GAN.get_weights(), vars_on_cpu=optimizer_vars_on_cpu)
|
||||
self.model_filename_list += [ [self.GAN, 'GAN.npy'],
|
||||
[self.GAN_opt, 'GAN_opt.npy'] ]
|
||||
|
||||
if self.is_training:
|
||||
# Adjust batch size for multiple GPU
|
||||
|
@ -404,10 +351,14 @@ class AMPModel(ModelBase):
|
|||
|
||||
gpu_src_losses = []
|
||||
gpu_dst_losses = []
|
||||
gpu_G_loss_gvs = []
|
||||
gpu_GAN_loss_gvs = []
|
||||
gpu_D_code_loss_gvs = []
|
||||
gpu_D_src_dst_loss_gvs = []
|
||||
gpu_G_loss_gradients = []
|
||||
gpu_GAN_loss_gradients = []
|
||||
|
||||
def DLossOnes(logits):
|
||||
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(logits), logits=logits), axis=[1,2,3])
|
||||
|
||||
def DLossZeros(logits):
|
||||
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(logits), logits=logits), axis=[1,2,3])
|
||||
|
||||
for gpu_id in range(gpu_count):
|
||||
with tf.device( f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
|
||||
|
@ -427,163 +378,114 @@ class AMPModel(ModelBase):
|
|||
gpu_src_code = self.encoder (gpu_warped_src)
|
||||
gpu_dst_code = self.encoder (gpu_warped_dst)
|
||||
|
||||
if pretrain:
|
||||
gpu_src_inter_src_code = self.inter_src (gpu_src_code)
|
||||
gpu_dst_inter_dst_code = self.inter_dst (gpu_dst_code)
|
||||
gpu_src_code = gpu_src_inter_src_code * nn.random_binomial( [bs_per_gpu, gpu_src_inter_src_code.shape.as_list()[1], 1,1] , p=morph_factor)
|
||||
gpu_dst_code = gpu_src_dst_code = gpu_dst_inter_dst_code * nn.random_binomial( [bs_per_gpu, gpu_dst_inter_dst_code.shape.as_list()[1], 1,1] , p=0.25)
|
||||
else:
|
||||
gpu_src_inter_src_code = self.inter_src (gpu_src_code)
|
||||
gpu_src_inter_dst_code = self.inter_dst (gpu_src_code)
|
||||
gpu_dst_inter_src_code = self.inter_src (gpu_dst_code)
|
||||
gpu_dst_inter_dst_code = self.inter_dst (gpu_dst_code)
|
||||
gpu_src_inter_src_code, gpu_src_inter_dst_code = self.inter_src (gpu_src_code), self.inter_dst (gpu_src_code)
|
||||
gpu_dst_inter_src_code, gpu_dst_inter_dst_code = self.inter_src (gpu_dst_code), self.inter_dst (gpu_dst_code)
|
||||
|
||||
inter_dims_bin = int(inter_dims*morph_factor)
|
||||
with tf.device(f'/CPU:0'):
|
||||
inter_rnd_binomial = tf.stack([tf.random.shuffle(tf.concat([tf.tile(tf.constant([1], tf.float32), ( inter_dims_bin, )),
|
||||
tf.tile(tf.constant([0], tf.float32), ( inter_dims-inter_dims_bin, ))], 0 )) for _ in range(bs_per_gpu)], 0)
|
||||
|
||||
inter_rnd_binomial = tf.stop_gradient(inter_rnd_binomial[...,None,None])
|
||||
|
||||
inter_rnd_binomial = nn.random_binomial( [bs_per_gpu, gpu_src_inter_src_code.shape.as_list()[1], 1,1] , p=morph_factor)
|
||||
gpu_src_code = gpu_src_inter_src_code * inter_rnd_binomial + gpu_src_inter_dst_code * (1-inter_rnd_binomial)
|
||||
gpu_dst_code = gpu_dst_inter_dst_code
|
||||
|
||||
ae_dims_slice = tf.cast(ae_dims*self.morph_value_t[0], tf.int32)
|
||||
gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, ae_dims_slice , lowest_dense_res, lowest_dense_res]),
|
||||
tf.slice(gpu_dst_inter_dst_code, [0,ae_dims_slice,0,0], [-1,ae_dims-ae_dims_slice, lowest_dense_res,lowest_dense_res]) ), 1 )
|
||||
inter_dims_slice = tf.cast(inter_dims*self.morph_value_t[0], tf.int32)
|
||||
gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, inter_dims_slice , inter_res, inter_res]),
|
||||
tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,inter_dims-inter_dims_slice, inter_res,inter_res]) ), 1 )
|
||||
|
||||
gpu_pred_src_src, gpu_pred_src_srcm = self.decoder(gpu_src_code)
|
||||
gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder(gpu_dst_code)
|
||||
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)
|
||||
|
||||
gpu_pred_src_src_list.append(gpu_pred_src_src)
|
||||
gpu_pred_dst_dst_list.append(gpu_pred_dst_dst)
|
||||
gpu_pred_src_dst_list.append(gpu_pred_src_dst)
|
||||
gpu_pred_src_src_list.append(gpu_pred_src_src), gpu_pred_src_srcm_list.append(gpu_pred_src_srcm)
|
||||
gpu_pred_dst_dst_list.append(gpu_pred_dst_dst), gpu_pred_dst_dstm_list.append(gpu_pred_dst_dstm)
|
||||
gpu_pred_src_dst_list.append(gpu_pred_src_dst), gpu_pred_src_dstm_list.append(gpu_pred_src_dstm)
|
||||
|
||||
gpu_pred_src_srcm_list.append(gpu_pred_src_srcm)
|
||||
gpu_pred_dst_dstm_list.append(gpu_pred_dst_dstm)
|
||||
gpu_pred_src_dstm_list.append(gpu_pred_src_dstm)
|
||||
gpu_target_srcm_anti = 1-gpu_target_srcm
|
||||
gpu_target_dstm_anti = 1-gpu_target_dstm
|
||||
|
||||
gpu_target_srcm_blur = nn.gaussian_blur(gpu_target_srcm, max(1, resolution // 32) )
|
||||
gpu_target_srcm_blur = tf.clip_by_value(gpu_target_srcm_blur, 0, 0.5) * 2
|
||||
gpu_target_srcm_gblur = nn.gaussian_blur(gpu_target_srcm, resolution // 32)
|
||||
gpu_target_dstm_gblur = nn.gaussian_blur(gpu_target_dstm, resolution // 32)
|
||||
|
||||
gpu_target_dstm_blur = nn.gaussian_blur(gpu_target_dstm, max(1, resolution // 32) )
|
||||
gpu_target_dstm_blur = tf.clip_by_value(gpu_target_dstm_blur, 0, 0.5) * 2
|
||||
gpu_target_srcm_blur = tf.clip_by_value(gpu_target_srcm_gblur, 0, 0.5) * 2
|
||||
gpu_target_dstm_blur = tf.clip_by_value(gpu_target_dstm_gblur, 0, 0.5) * 2
|
||||
gpu_target_srcm_anti_blur = 1.0-gpu_target_srcm_blur
|
||||
gpu_target_dstm_anti_blur = 1.0-gpu_target_dstm_blur
|
||||
|
||||
gpu_target_dst_anti_masked = gpu_target_dst*(1.0-gpu_target_dstm_blur)
|
||||
gpu_target_src_anti_masked = gpu_target_src*(1.0-gpu_target_srcm_blur)
|
||||
gpu_target_src_masked_opt = gpu_target_src*gpu_target_srcm_blur if masked_training else gpu_target_src
|
||||
gpu_target_dst_masked_opt = gpu_target_dst*gpu_target_dstm_blur if masked_training else gpu_target_dst
|
||||
if blur_out_mask:
|
||||
sigma = resolution / 128
|
||||
|
||||
gpu_pred_src_src_masked_opt = gpu_pred_src_src*gpu_target_srcm_blur if masked_training else gpu_pred_src_src
|
||||
gpu_pred_src_src_anti_masked = gpu_pred_src_src*(1.0-gpu_target_srcm_blur)
|
||||
gpu_pred_dst_dst_masked_opt = gpu_pred_dst_dst*gpu_target_dstm_blur if masked_training else gpu_pred_dst_dst
|
||||
gpu_pred_dst_dst_anti_masked = gpu_pred_dst_dst*(1.0-gpu_target_dstm_blur)
|
||||
x = nn.gaussian_blur(gpu_target_src*gpu_target_srcm_anti, sigma)
|
||||
y = 1-nn.gaussian_blur(gpu_target_srcm, sigma)
|
||||
y = tf.where(tf.equal(y, 0), tf.ones_like(y), y)
|
||||
gpu_target_src = gpu_target_src*gpu_target_srcm + (x/y)*gpu_target_srcm_anti
|
||||
|
||||
if self.options['loss_function'] == 'MS-SSIM':
|
||||
gpu_dst_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0)
|
||||
gpu_dst_loss += tf.reduce_mean ( 10*tf.square ( gpu_target_dst_masked_opt - gpu_pred_dst_dst_masked_opt ), axis=[1,2,3])
|
||||
elif self.options['loss_function'] == 'MS-SSIM+L1':
|
||||
gpu_dst_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution, use_l1=True)(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0)
|
||||
else:
|
||||
if resolution < 256:
|
||||
gpu_dst_loss = tf.reduce_mean ( 10*nn.dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
|
||||
else:
|
||||
gpu_dst_loss = tf.reduce_mean ( 5*nn.dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
|
||||
gpu_dst_loss += tf.reduce_mean ( 5*nn.dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/23.2) ), axis=[1])
|
||||
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dst_masked_opt- gpu_pred_dst_dst_masked_opt ), axis=[1,2,3])
|
||||
if eyes_mouth_prio:
|
||||
gpu_dst_loss += tf.reduce_mean ( 300*tf.abs ( gpu_target_dst*gpu_target_dstm_em - gpu_pred_dst_dst*gpu_target_dstm_em ), axis=[1,2,3])
|
||||
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] )
|
||||
gpu_dst_loss += 0.1*tf.reduce_mean(tf.square(gpu_pred_dst_dst_anti_masked-gpu_target_dst_anti_masked),axis=[1,2,3] )
|
||||
x = nn.gaussian_blur(gpu_target_dst*gpu_target_dstm_anti, sigma)
|
||||
y = 1-nn.gaussian_blur(gpu_target_dstm, sigma)
|
||||
y = tf.where(tf.equal(y, 0), tf.ones_like(y), y)
|
||||
gpu_target_dst = gpu_target_dst*gpu_target_dstm + (x/y)*gpu_target_dstm_anti
|
||||
|
||||
if self.options['background_power'] > 0:
|
||||
bg_factor = self.options['background_power']
|
||||
gpu_target_src_masked = gpu_target_src*gpu_target_srcm_blur
|
||||
gpu_target_dst_masked = gpu_target_dst*gpu_target_dstm_blur
|
||||
gpu_target_src_anti_masked = gpu_target_src*gpu_target_srcm_anti_blur
|
||||
gpu_target_dst_anti_masked = gpu_target_dst*gpu_target_dstm_anti_blur
|
||||
|
||||
if self.options['loss_function'] == 'MS-SSIM':
|
||||
gpu_dst_loss += bg_factor * 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0)
|
||||
gpu_dst_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_dst - gpu_pred_dst_dst ), axis=[1,2,3])
|
||||
elif self.options['loss_function'] == 'MS-SSIM+L1':
|
||||
gpu_dst_loss += bg_factor * 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution, use_l1=True)(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0)
|
||||
else:
|
||||
if resolution < 256:
|
||||
gpu_dst_loss += bg_factor * tf.reduce_mean ( 10*nn.dssim(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
||||
else:
|
||||
gpu_dst_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
||||
gpu_dst_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
|
||||
gpu_dst_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_dst - gpu_pred_dst_dst ), axis=[1,2,3])
|
||||
gpu_pred_src_src_masked = gpu_pred_src_src*gpu_target_srcm_blur
|
||||
gpu_pred_dst_dst_masked = gpu_pred_dst_dst*gpu_target_dstm_blur
|
||||
gpu_pred_src_src_anti_masked = gpu_pred_src_src*gpu_target_srcm_anti_blur
|
||||
gpu_pred_dst_dst_anti_masked = gpu_pred_dst_dst*gpu_target_dstm_anti_blur
|
||||
|
||||
gpu_dst_losses += [gpu_dst_loss]
|
||||
# Structural loss
|
||||
gpu_src_loss = tf.reduce_mean (5*nn.dssim(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
||||
gpu_src_loss += tf.reduce_mean (5*nn.dssim(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
|
||||
gpu_dst_loss = tf.reduce_mean (5*nn.dssim(gpu_target_dst_masked, gpu_pred_dst_dst_masked, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
|
||||
gpu_dst_loss += tf.reduce_mean (5*nn.dssim(gpu_target_dst_masked, gpu_pred_dst_dst_masked, max_val=1.0, filter_size=int(resolution/23.2) ), axis=[1])
|
||||
|
||||
if not pretrain:
|
||||
if self.options['loss_function'] == 'MS-SSIM':
|
||||
gpu_src_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0)
|
||||
gpu_src_loss += tf.reduce_mean ( 10*tf.square ( gpu_target_src_masked_opt - gpu_pred_src_src_masked_opt ), axis=[1,2,3])
|
||||
elif self.options['loss_function'] == 'MS-SSIM+L1':
|
||||
gpu_src_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution, use_l1=True)(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0)
|
||||
else:
|
||||
if resolution < 256:
|
||||
gpu_src_loss = tf.reduce_mean ( 10*nn.dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
||||
else:
|
||||
gpu_src_loss = tf.reduce_mean ( 5*nn.dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
||||
gpu_src_loss += tf.reduce_mean ( 5*nn.dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
|
||||
gpu_src_loss += tf.reduce_mean ( 10*tf.square ( gpu_target_src_masked_opt - gpu_pred_src_src_masked_opt ), axis=[1,2,3])
|
||||
# Pixel loss
|
||||
gpu_src_loss += tf.reduce_mean (10*tf.square(gpu_target_src_masked-gpu_pred_src_src_masked), axis=[1,2,3])
|
||||
gpu_dst_loss += tf.reduce_mean (10*tf.square(gpu_target_dst_masked-gpu_pred_dst_dst_masked), axis=[1,2,3])
|
||||
|
||||
if eyes_mouth_prio:
|
||||
# Eyes+mouth prio loss
|
||||
gpu_src_loss += tf.reduce_mean (300*tf.abs (gpu_target_src*gpu_target_srcm_em-gpu_pred_src_src*gpu_target_srcm_em), axis=[1,2,3])
|
||||
gpu_dst_loss += tf.reduce_mean (300*tf.abs (gpu_target_dst*gpu_target_dstm_em-gpu_pred_dst_dst*gpu_target_dstm_em), axis=[1,2,3])
|
||||
|
||||
# Mask loss
|
||||
gpu_src_loss += tf.reduce_mean ( 10*tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] )
|
||||
|
||||
if self.options['background_power'] > 0:
|
||||
bg_factor = self.options['background_power']
|
||||
|
||||
if self.options['loss_function'] == 'MS-SSIM':
|
||||
gpu_src_loss += bg_factor * 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_src, gpu_pred_src_src, max_val=1.0)
|
||||
gpu_src_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_src - gpu_pred_src_src ), axis=[1,2,3])
|
||||
elif self.options['loss_function'] == 'MS-SSIM+L1':
|
||||
gpu_src_loss += bg_factor * 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution, use_l1=True)(gpu_target_src, gpu_pred_src_src, max_val=1.0)
|
||||
else:
|
||||
if resolution < 256:
|
||||
gpu_src_loss += bg_factor * tf.reduce_mean ( 10*nn.dssim(gpu_target_src, gpu_pred_src_src, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
||||
else:
|
||||
gpu_src_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_src, gpu_pred_src_src, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
||||
gpu_src_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_src, gpu_pred_src_src, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
|
||||
gpu_src_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_src - gpu_pred_src_src ), axis=[1,2,3])
|
||||
else:
|
||||
gpu_src_loss = gpu_dst_loss
|
||||
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] )
|
||||
|
||||
gpu_src_losses += [gpu_src_loss]
|
||||
|
||||
if pretrain:
|
||||
gpu_G_loss = gpu_dst_loss
|
||||
else:
|
||||
gpu_dst_losses += [gpu_dst_loss]
|
||||
gpu_G_loss = gpu_src_loss + gpu_dst_loss
|
||||
# dst-dst background weak loss
|
||||
gpu_G_loss += tf.reduce_mean(0.1*tf.square(gpu_pred_dst_dst_anti_masked-gpu_target_dst_anti_masked),axis=[1,2,3] )
|
||||
gpu_G_loss += 0.000001*nn.total_variation_mse(gpu_pred_dst_dst_anti_masked)
|
||||
|
||||
def DLossOnes(logits):
|
||||
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(logits), logits=logits), axis=[1,2,3])
|
||||
|
||||
def DLossZeros(logits):
|
||||
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(logits), logits=logits), axis=[1,2,3])
|
||||
|
||||
if gan_power != 0:
|
||||
gpu_pred_src_src_d, gpu_pred_src_src_d2 = self.GAN(gpu_pred_src_src_masked_opt)
|
||||
gpu_pred_dst_dst_d, gpu_pred_dst_dst_d2 = self.GAN(gpu_pred_dst_dst_masked_opt)
|
||||
gpu_target_src_d, gpu_target_src_d2 = self.GAN(gpu_target_src_masked_opt)
|
||||
gpu_target_dst_d, gpu_target_dst_d2 = self.GAN(gpu_target_dst_masked_opt)
|
||||
gpu_pred_src_src_d, gpu_pred_src_src_d2 = self.GAN(gpu_pred_src_src_masked)
|
||||
gpu_pred_dst_dst_d, gpu_pred_dst_dst_d2 = self.GAN(gpu_pred_dst_dst_masked)
|
||||
gpu_target_src_d, gpu_target_src_d2 = self.GAN(gpu_target_src_masked)
|
||||
gpu_target_dst_d, gpu_target_dst_d2 = self.GAN(gpu_target_dst_masked)
|
||||
|
||||
gpu_D_src_dst_loss = (DLossOnes (gpu_target_src_d) + DLossOnes (gpu_target_src_d2) + \
|
||||
gpu_GAN_loss = (DLossOnes (gpu_target_src_d) + DLossOnes (gpu_target_src_d2) + \
|
||||
DLossZeros(gpu_pred_src_src_d) + DLossZeros(gpu_pred_src_src_d2) + \
|
||||
DLossOnes (gpu_target_dst_d) + DLossOnes (gpu_target_dst_d2) + \
|
||||
DLossZeros(gpu_pred_dst_dst_d) + DLossZeros(gpu_pred_dst_dst_d2)
|
||||
) * (1.0 / 8)
|
||||
|
||||
gpu_D_src_dst_loss_gvs += [ nn.gradients (gpu_D_src_dst_loss, self.GAN.get_weights() ) ]
|
||||
gpu_GAN_loss_gradients += [ nn.gradients (gpu_GAN_loss, self.GAN.get_weights() ) ]
|
||||
|
||||
gpu_G_loss += (DLossOnes(gpu_pred_src_src_d) + DLossOnes(gpu_pred_src_src_d2) + \
|
||||
DLossOnes(gpu_pred_dst_dst_d) + DLossOnes(gpu_pred_dst_dst_d2)
|
||||
) * gan_power
|
||||
|
||||
if masked_training:
|
||||
# Minimal src-src-bg rec with total_variation_mse to suppress random bright dots from gan
|
||||
gpu_G_loss += 0.000001*nn.total_variation_mse(gpu_pred_src_src)
|
||||
gpu_G_loss += 0.02*tf.reduce_mean(tf.square(gpu_pred_src_src_anti_masked-gpu_target_src_anti_masked),axis=[1,2,3] )
|
||||
|
||||
gpu_G_loss_gvs += [ nn.gradients ( gpu_G_loss, self.trainable_weights ) ]
|
||||
|
||||
gpu_G_loss_gradients += [ nn.gradients ( gpu_G_loss, self.G_weights ) ]
|
||||
|
||||
# Average losses and gradients, and create optimizer update ops
|
||||
with tf.device(f'/CPU:0'):
|
||||
|
@ -597,17 +499,15 @@ class AMPModel(ModelBase):
|
|||
with tf.device (models_opt_device):
|
||||
src_loss = tf.concat(gpu_src_losses, 0)
|
||||
dst_loss = tf.concat(gpu_dst_losses, 0)
|
||||
src_dst_loss_gv_op = self.src_dst_opt.get_update_op (nn.average_gv_list (gpu_G_loss_gvs))
|
||||
train_op = self.src_dst_opt.get_update_op (nn.average_gv_list (gpu_G_loss_gradients))
|
||||
|
||||
if gan_power != 0:
|
||||
src_D_src_dst_loss_gv_op = self.GAN_opt.get_update_op (nn.average_gv_list(gpu_D_src_dst_loss_gvs) )
|
||||
#GAN_loss_gv_op = self.src_dst_opt.get_update_op (nn.average_gv_list(gpu_GAN_loss_gvs) )
|
||||
|
||||
GAN_train_op = self.GAN_opt.get_update_op (nn.average_gv_list(gpu_GAN_loss_gradients) )
|
||||
|
||||
# Initializing training and view functions
|
||||
def src_dst_train(warped_src, target_src, target_srcm, target_srcm_em, \
|
||||
def train(warped_src, target_src, target_srcm, target_srcm_em, \
|
||||
warped_dst, target_dst, target_dstm, target_dstm_em, ):
|
||||
s, d, _ = nn.tf_sess.run ( [ src_loss, dst_loss, src_dst_loss_gv_op],
|
||||
s, d, _ = nn.tf_sess.run ([src_loss, dst_loss, train_op],
|
||||
feed_dict={self.warped_src :warped_src,
|
||||
self.target_src :target_src,
|
||||
self.target_srcm:target_srcm,
|
||||
|
@ -618,12 +518,12 @@ class AMPModel(ModelBase):
|
|||
self.target_dstm_em:target_dstm_em,
|
||||
})
|
||||
return s, d
|
||||
self.src_dst_train = src_dst_train
|
||||
self.train = train
|
||||
|
||||
if gan_power != 0:
|
||||
def D_src_dst_train(warped_src, target_src, target_srcm, target_srcm_em, \
|
||||
def GAN_train(warped_src, target_src, target_srcm, target_srcm_em, \
|
||||
warped_dst, target_dst, target_dstm, target_dstm_em, ):
|
||||
nn.tf_sess.run ([src_D_src_dst_loss_gv_op], feed_dict={self.warped_src :warped_src,
|
||||
nn.tf_sess.run ([GAN_train_op], feed_dict={self.warped_src :warped_src,
|
||||
self.target_src :target_src,
|
||||
self.target_srcm:target_srcm,
|
||||
self.target_srcm_em:target_srcm_em,
|
||||
|
@ -631,8 +531,7 @@ class AMPModel(ModelBase):
|
|||
self.target_dst :target_dst,
|
||||
self.target_dstm:target_dstm,
|
||||
self.target_dstm_em:target_dstm_em})
|
||||
self.D_src_dst_train = D_src_dst_train
|
||||
|
||||
self.GAN_train = GAN_train
|
||||
|
||||
def AE_view(warped_src, warped_dst, morph_value):
|
||||
return nn.tf_sess.run ( [pred_src_src, pred_dst_dst, pred_dst_dstm, pred_src_dst, pred_src_dstm],
|
||||
|
@ -646,9 +545,9 @@ class AMPModel(ModelBase):
|
|||
gpu_dst_inter_src_code = self.inter_src (gpu_dst_code)
|
||||
gpu_dst_inter_dst_code = self.inter_dst (gpu_dst_code)
|
||||
|
||||
ae_dims_slice = tf.cast(ae_dims*self.morph_value_t[0], tf.int32)
|
||||
gpu_src_dst_code = tf.concat( ( tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, ae_dims_slice , lowest_dense_res, lowest_dense_res]),
|
||||
tf.slice(gpu_dst_inter_dst_code, [0,ae_dims_slice,0,0], [-1,ae_dims-ae_dims_slice, lowest_dense_res,lowest_dense_res]) ), 1 )
|
||||
inter_dims_slice = tf.cast(inter_dims*self.morph_value_t[0], tf.int32)
|
||||
gpu_src_dst_code = tf.concat( ( tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, inter_dims_slice , inter_res, inter_res]),
|
||||
tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,inter_dims-inter_dims_slice, inter_res,inter_res]) ), 1 )
|
||||
|
||||
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)
|
||||
_, gpu_pred_dst_dstm = self.decoder(gpu_dst_inter_dst_code)
|
||||
|
@ -660,33 +559,24 @@ class AMPModel(ModelBase):
|
|||
|
||||
# Loading/initializing all models/optimizers weights
|
||||
for model, filename in io.progress_bar_generator(self.model_filename_list, "Initializing models"):
|
||||
if self.pretrain_just_disabled:
|
||||
do_init = False
|
||||
if model == self.inter_src or model == self.inter_dst:
|
||||
do_init = True
|
||||
else:
|
||||
do_init = self.is_first_run()
|
||||
if self.is_training and gan_power != 0 and model == self.GAN:
|
||||
if self.gan_model_changed:
|
||||
do_init = True
|
||||
|
||||
if not do_init:
|
||||
do_init = not model.load_weights( self.get_strpath_storage_for_file(filename) )
|
||||
if do_init:
|
||||
model.init_weights()
|
||||
|
||||
|
||||
###############
|
||||
|
||||
# initializing sample generators
|
||||
if self.is_training:
|
||||
training_data_src_path = self.training_data_src_path if not self.pretrain else self.get_pretraining_data_path()
|
||||
training_data_dst_path = self.training_data_dst_path if not self.pretrain else self.get_pretraining_data_path()
|
||||
training_data_src_path = self.training_data_src_path #if not self.pretrain else self.get_pretraining_data_path()
|
||||
training_data_dst_path = self.training_data_dst_path #if not self.pretrain else self.get_pretraining_data_path()
|
||||
|
||||
random_ct_samples_path=training_data_dst_path if ct_mode is not None and not self.pretrain else None
|
||||
random_ct_samples_path=training_data_dst_path if ct_mode is not None else None #and not self.pretrain
|
||||
|
||||
|
||||
cpu_count = min(multiprocessing.cpu_count(), 8)
|
||||
cpu_count = multiprocessing.cpu_count()
|
||||
src_generators_count = cpu_count // 2
|
||||
dst_generators_count = cpu_count // 2
|
||||
if ct_mode is not None:
|
||||
|
@ -700,7 +590,7 @@ class AMPModel(ModelBase):
|
|||
|
||||
self.set_training_data_generators ([
|
||||
SampleGeneratorFace(training_data_src_path, random_ct_samples_path=random_ct_samples_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
||||
sample_process_options=SampleProcessor.Options(random_flip=random_src_flip),
|
||||
sample_process_options=SampleProcessor.Options(random_flip=self.random_src_flip),
|
||||
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp,
|
||||
'random_downsample': self.options['random_downsample'],
|
||||
'random_noise': self.options['random_noise'],
|
||||
|
@ -708,15 +598,17 @@ class AMPModel(ModelBase):
|
|||
'random_jpeg': self.options['random_jpeg'],
|
||||
'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode,
|
||||
'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False,
|
||||
'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode,
|
||||
'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
],
|
||||
uniform_yaw_distribution=self.options['uniform_yaw'] or self.pretrain,
|
||||
uniform_yaw_distribution=self.options['uniform_yaw'], #or self.pretrain
|
||||
generators_count=src_generators_count ),
|
||||
|
||||
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
||||
sample_process_options=SampleProcessor.Options(random_flip=random_dst_flip),
|
||||
sample_process_options=SampleProcessor.Options(random_flip=self.random_dst_flip),
|
||||
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp,
|
||||
'random_downsample': self.options['random_downsample'],
|
||||
'random_noise': self.options['random_noise'],
|
||||
|
@ -728,17 +620,60 @@ class AMPModel(ModelBase):
|
|||
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
],
|
||||
uniform_yaw_distribution=self.options['uniform_yaw'] or self.pretrain,
|
||||
uniform_yaw_distribution=self.options['uniform_yaw'], #or self.pretrain,
|
||||
generators_count=dst_generators_count )
|
||||
])
|
||||
|
||||
"""SampleGeneratorFace(training_data_src_path, random_ct_samples_path=random_ct_samples_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
||||
sample_process_options=SampleProcessor.Options(random_flip=self.random_src_flip),
|
||||
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp,
|
||||
'random_downsample': self.options['random_downsample'],
|
||||
'random_noise': self.options['random_noise'],
|
||||
'random_blur': self.options['random_blur'],
|
||||
'random_jpeg': self.options['random_jpeg'],
|
||||
'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode,
|
||||
'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False
|
||||
, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': ct_mode,
|
||||
'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False,
|
||||
'transform':True, 'channel_type' : SampleProcessor.ChannelType.G,
|
||||
'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE,'face_type':face_type,
|
||||
'data_format':nn.data_format, 'resolution': resolution},
|
||||
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False,
|
||||
'transform':True, 'channel_type' : SampleProcessor.ChannelType.G,
|
||||
'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':face_type,
|
||||
'data_format':nn.data_format, 'resolution': resolution},
|
||||
],
|
||||
uniform_yaw_distribution=self.options['uniform_yaw'],# or self.pretrain,
|
||||
generators_count=src_generators_count ),
|
||||
|
||||
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
||||
sample_process_options=SampleProcessor.Options(random_flip=self.random_dst_flip),
|
||||
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp,
|
||||
'random_downsample': self.options['random_downsample'],
|
||||
'random_noise': self.options['random_noise'],
|
||||
'random_blur': self.options['random_blur'],
|
||||
'random_jpeg': self.options['random_jpeg'],
|
||||
'transform':True, 'channel_type' : channel_type, 'ct_mode': fs_aug,
|
||||
'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.EYES_MOUTH, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
],
|
||||
uniform_yaw_distribution=self.options['uniform_yaw'],# or self.pretrain,
|
||||
generators_count=dst_generators_count )
|
||||
])"""
|
||||
|
||||
self.last_src_samples_loss = []
|
||||
self.last_dst_samples_loss = []
|
||||
if self.pretrain_just_disabled:
|
||||
self.update_sample_for_preview(force_new=True)
|
||||
|
||||
"""
|
||||
def export_dfm (self):
|
||||
output_path=self.get_strpath_storage_for_file('model.dfm')
|
||||
|
||||
io.log_info(f'Dumping .dfm to {output_path}')
|
||||
|
||||
def dump_ckpt(self):
|
||||
tf = nn.tf
|
||||
with tf.device (nn.tf_default_device_name):
|
||||
warped_dst = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face')
|
||||
|
@ -749,9 +684,9 @@ class AMPModel(ModelBase):
|
|||
gpu_dst_inter_src_code = self.inter_src ( gpu_dst_code)
|
||||
gpu_dst_inter_dst_code = self.inter_dst ( gpu_dst_code)
|
||||
|
||||
ae_dims_slice = tf.cast(self.ae_dims*morph_value[0], tf.int32)
|
||||
gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, ae_dims_slice , self.lowest_dense_res, self.lowest_dense_res]),
|
||||
tf.slice(gpu_dst_inter_dst_code, [0,ae_dims_slice,0,0], [-1,self.ae_dims-ae_dims_slice, self.lowest_dense_res,self.lowest_dense_res]) ), 1 )
|
||||
inter_dims_slice = tf.cast(self.inter_dims*morph_value[0], tf.int32)
|
||||
gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, inter_dims_slice , self.inter_res, self.inter_res]),
|
||||
tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,self.inter_dims-inter_dims_slice, self.inter_res,self.inter_res]) ), 1 )
|
||||
|
||||
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)
|
||||
_, gpu_pred_dst_dstm = self.decoder(gpu_dst_inter_dst_code)
|
||||
|
@ -770,10 +705,16 @@ class AMPModel(ModelBase):
|
|||
['out_face_mask','out_celeb_face','out_celeb_face_mask']
|
||||
)
|
||||
|
||||
pb_filepath = self.get_strpath_storage_for_file('.pb')
|
||||
with tf.gfile.GFile(pb_filepath, "wb") as f:
|
||||
f.write(output_graph_def.SerializeToString())
|
||||
|
||||
import tf2onnx
|
||||
with tf.device("/CPU:0"):
|
||||
model_proto, _ = tf2onnx.convert._convert_common(
|
||||
output_graph_def,
|
||||
name='AMP',
|
||||
input_names=['in_face:0','morph_value:0'],
|
||||
output_names=['out_face_mask:0','out_celeb_face:0','out_celeb_face_mask:0'],
|
||||
opset=9,
|
||||
output_path=output_path)
|
||||
"""
|
||||
#override
|
||||
def get_model_filename_list(self):
|
||||
return self.model_filename_list
|
||||
|
@ -795,35 +736,35 @@ class AMPModel(ModelBase):
|
|||
( (warped_src, target_src, target_srcm, target_srcm_em), \
|
||||
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = self.generate_next_samples()
|
||||
|
||||
src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
|
||||
src_loss, dst_loss = self.train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
|
||||
|
||||
for i in range(bs):
|
||||
self.last_src_samples_loss.append ( (target_src[i], target_srcm[i], target_srcm_em[i], src_loss[i] ) )
|
||||
self.last_dst_samples_loss.append ( (target_dst[i], target_dstm[i], target_dstm_em[i], dst_loss[i] ) )
|
||||
self.last_src_samples_loss.append ( (src_loss[i], target_src[i], target_srcm[i], target_srcm_em[i]) )
|
||||
self.last_dst_samples_loss.append ( (dst_loss[i], target_dst[i], target_dstm[i], target_dstm_em[i]) )
|
||||
|
||||
if len(self.last_src_samples_loss) >= bs*16:
|
||||
src_samples_loss = sorted(self.last_src_samples_loss, key=operator.itemgetter(3), reverse=True)
|
||||
dst_samples_loss = sorted(self.last_dst_samples_loss, key=operator.itemgetter(3), reverse=True)
|
||||
src_samples_loss = sorted(self.last_src_samples_loss, key=operator.itemgetter(0), reverse=True)
|
||||
dst_samples_loss = sorted(self.last_dst_samples_loss, key=operator.itemgetter(0), reverse=True)
|
||||
|
||||
target_src = np.stack( [ x[0] for x in src_samples_loss[:bs] ] )
|
||||
target_srcm = np.stack( [ x[1] for x in src_samples_loss[:bs] ] )
|
||||
target_srcm_em = np.stack( [ x[2] for x in src_samples_loss[:bs] ] )
|
||||
target_src = np.stack( [ x[1] for x in src_samples_loss[:bs] ] )
|
||||
target_srcm = np.stack( [ x[2] for x in src_samples_loss[:bs] ] )
|
||||
target_srcm_em = np.stack( [ x[3] for x in src_samples_loss[:bs] ] )
|
||||
|
||||
target_dst = np.stack( [ x[0] for x in dst_samples_loss[:bs] ] )
|
||||
target_dstm = np.stack( [ x[1] for x in dst_samples_loss[:bs] ] )
|
||||
target_dstm_em = np.stack( [ x[2] for x in dst_samples_loss[:bs] ] )
|
||||
target_dst = np.stack( [ x[1] for x in dst_samples_loss[:bs] ] )
|
||||
target_dstm = np.stack( [ x[2] for x in dst_samples_loss[:bs] ] )
|
||||
target_dstm_em = np.stack( [ x[3] for x in dst_samples_loss[:bs] ] )
|
||||
|
||||
src_loss, dst_loss = self.src_dst_train (target_src, target_src, target_srcm, target_srcm_em, target_dst, target_dst, target_dstm, target_dstm_em)
|
||||
src_loss, dst_loss = self.train (target_src, target_src, target_srcm, target_srcm_em, target_dst, target_dst, target_dstm, target_dstm_em)
|
||||
self.last_src_samples_loss = []
|
||||
self.last_dst_samples_loss = []
|
||||
|
||||
if self.gan_power != 0:
|
||||
self.D_src_dst_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
|
||||
self.GAN_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
|
||||
|
||||
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
|
||||
|
||||
#override
|
||||
def onGetPreview(self, samples):
|
||||
def onGetPreview(self, samples, for_history=False):
|
||||
( (warped_src, target_src, target_srcm, target_srcm_em),
|
||||
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples
|
||||
|
||||
|
@ -853,18 +794,17 @@ class AMPModel(ModelBase):
|
|||
|
||||
result = []
|
||||
|
||||
i = np.random.randint(n_samples)
|
||||
i = np.random.randint(n_samples) if not for_history else 0
|
||||
|
||||
st = [ np.concatenate ((S[i], D[i], DD[i]*DDM_000[i]), axis=1) ]
|
||||
st += [ np.concatenate ((SS[i], DD[i], SD_075[i] ), axis=1) ]
|
||||
st += [ np.concatenate ((SS[i], DD[i], SD_100[i] ), axis=1) ]
|
||||
|
||||
result += [ ('AMP morph 0.75', np.concatenate (st, axis=0 )), ]
|
||||
result += [ ('AMP morph 1.0', np.concatenate (st, axis=0 )), ]
|
||||
|
||||
st = [ np.concatenate ((DD[i], SD_025[i], SD_050[i]), axis=1) ]
|
||||
st += [ np.concatenate ((SD_065[i], SD_075[i], SD_100[i]), axis=1) ]
|
||||
result += [ ('AMP morph list', np.concatenate (st, axis=0 )), ]
|
||||
|
||||
|
||||
st = [ np.concatenate ((DD[i], SD_025[i]*DDM_025[i]*SDM_025[i], SD_050[i]*DDM_050[i]*SDM_050[i]), axis=1) ]
|
||||
st += [ np.concatenate ((SD_065[i]*DDM_065[i]*SDM_065[i], SD_075[i]*DDM_075[i]*SDM_075[i], SD_100[i]*DDM_100[i]*SDM_100[i]), axis=1) ]
|
||||
result += [ ('AMP morph list masked', np.concatenate (st, axis=0 )), ]
|
||||
|
@ -880,7 +820,7 @@ class AMPModel(ModelBase):
|
|||
|
||||
#override
|
||||
def get_MergerConfig(self):
|
||||
morph_factor = np.clip ( io.input_number ("Morph factor", 0.75, add_info="0.0 .. 1.0"), 0.0, 1.0 )
|
||||
morph_factor = np.clip ( io.input_number ("Morph factor", 1.0, add_info="0.0 .. 1.0"), 0.0, 1.0 )
|
||||
|
||||
def predictor_morph(face):
|
||||
return self.predictor_func(face, morph_factor)
|
||||
|
|
|
@ -278,7 +278,7 @@ class QModel(ModelBase):
|
|||
return ( ('src_loss', src_loss), ('dst_loss', dst_loss), )
|
||||
|
||||
#override
|
||||
def onGetPreview(self, samples):
|
||||
def onGetPreview(self, samples, for_history=False):
|
||||
( (warped_src, target_src, target_srcm),
|
||||
(warped_dst, target_dst, target_dstm) ) = samples
|
||||
|
||||
|
|
|
@ -30,13 +30,12 @@ class SAEHDModel(ModelBase):
|
|||
min_res = 64
|
||||
max_res = 640
|
||||
|
||||
default_usefp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
|
||||
default_resolution = self.options['resolution'] = self.load_or_def_option('resolution', 128)
|
||||
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'f')
|
||||
default_models_opt_on_gpu = self.options['models_opt_on_gpu'] = self.load_or_def_option('models_opt_on_gpu', True)
|
||||
|
||||
archi = self.load_or_def_option('archi', 'liae-ud')
|
||||
archi = {'dfuhd':'df-u','liaeuhd':'liae-u'}.get(archi, archi) #backward comp
|
||||
default_archi = self.options['archi'] = archi
|
||||
default_archi = self.options['archi'] = self.load_or_def_option('archi', 'liae-ud')
|
||||
|
||||
default_ae_dims = self.options['ae_dims'] = self.load_or_def_option('ae_dims', 256)
|
||||
default_e_dims = self.options['e_dims'] = self.load_or_def_option('e_dims', 64)
|
||||
|
@ -46,6 +45,7 @@ class SAEHDModel(ModelBase):
|
|||
default_eyes_prio = self.options['eyes_prio'] = self.load_or_def_option('eyes_prio', False)
|
||||
default_mouth_prio = self.options['mouth_prio'] = self.load_or_def_option('mouth_prio', False)
|
||||
default_uniform_yaw = self.options['uniform_yaw'] = self.load_or_def_option('uniform_yaw', False)
|
||||
default_blur_out_mask = self.options['blur_out_mask'] = self.load_or_def_option('blur_out_mask', False)
|
||||
|
||||
default_adabelief = self.options['adabelief'] = self.load_or_def_option('adabelief', True)
|
||||
|
||||
|
@ -80,6 +80,7 @@ class SAEHDModel(ModelBase):
|
|||
self.ask_random_src_flip()
|
||||
self.ask_random_dst_flip()
|
||||
self.ask_batch_size(suggest_batch_size)
|
||||
self.options['use_fp16'] = io.input_bool ("Use fp16", default_usefp16, help_message='Increases training/inference speed, reduces model size. Model may crash. Enable it after 1-5k iters.')
|
||||
|
||||
if self.is_first_run():
|
||||
resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16 and 32 for -d archi.")
|
||||
|
@ -112,7 +113,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
if archi_opts is not None:
|
||||
if len(archi_opts) == 0:
|
||||
continue
|
||||
if len([ 1 for opt in archi_opts if opt not in ['u','d'] ]) != 0:
|
||||
if len([ 1 for opt in archi_opts if opt not in ['u','d','t'] ]) != 0:
|
||||
continue
|
||||
|
||||
if 'd' in archi_opts:
|
||||
|
@ -147,6 +148,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
self.options['mouth_prio'] = io.input_bool ("Mouth priority", default_mouth_prio, help_message='Helps to fix mouth problems during training by forcing the neural network to train mouth with higher priority similar to eyes ')
|
||||
|
||||
self.options['uniform_yaw'] = io.input_bool ("Uniform yaw distribution of samples", default_uniform_yaw, help_message='Helps to fix blurry side faces due to small amount of them in the faceset.')
|
||||
self.options['blur_out_mask'] = io.input_bool ("Blur out mask", default_blur_out_mask, help_message='Blurs nearby area outside of applied face mask of training samples. The result is the background near the face is smoothed and less noticeable on swapped face. The exact xseg mask in src and dst faceset is required.')
|
||||
|
||||
default_gan_version = self.options['gan_version'] = self.load_or_def_option('gan_version', 2)
|
||||
default_gan_power = self.options['gan_power'] = self.load_or_def_option('gan_power', 0.0)
|
||||
|
@ -251,10 +253,16 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
|
||||
adabelief = self.options['adabelief']
|
||||
|
||||
use_fp16 = False
|
||||
if self.is_exporting:
|
||||
use_fp16 = io.input_bool ("Export quantized?", False, help_message='Makes the exported model faster. If you have problems, disable this option.')
|
||||
|
||||
self.gan_power = gan_power = 0.0 if self.pretrain else self.options['gan_power']
|
||||
random_warp = False if self.pretrain else self.options['random_warp']
|
||||
random_src_flip = self.random_src_flip if not self.pretrain else True
|
||||
random_dst_flip = self.random_dst_flip if not self.pretrain else True
|
||||
blur_out_mask = self.options['blur_out_mask']
|
||||
learn_dst_bg = False#True
|
||||
|
||||
if self.pretrain:
|
||||
self.options_show_override['gan_power'] = 0.0
|
||||
|
@ -293,7 +301,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
self.target_dstm_em = tf.placeholder (nn.floatx, mask_shape, name='target_dstm_em')
|
||||
|
||||
# Initializing model classes
|
||||
model_archi = nn.DeepFakeArchi(resolution, opts=archi_opts)
|
||||
model_archi = nn.DeepFakeArchi(resolution, use_fp16=use_fp16, opts=archi_opts)
|
||||
|
||||
with tf.device (models_opt_device):
|
||||
if 'df' in archi_type:
|
||||
|
@ -407,6 +415,22 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
gpu_target_dstm_all = self.target_dstm[batch_slice,:,:,:]
|
||||
gpu_target_dstm_em = self.target_dstm_em[batch_slice,:,:,:]
|
||||
|
||||
gpu_target_srcm_anti = 1-gpu_target_srcm_all
|
||||
gpu_target_dstm_anti = 1-gpu_target_dstm_all
|
||||
|
||||
if blur_out_mask:
|
||||
sigma = resolution / 128
|
||||
|
||||
x = nn.gaussian_blur(gpu_target_src*gpu_target_srcm_anti, sigma)
|
||||
y = 1-nn.gaussian_blur(gpu_target_srcm_all, sigma)
|
||||
y = tf.where(tf.equal(y, 0), tf.ones_like(y), y)
|
||||
gpu_target_src = gpu_target_src*gpu_target_srcm_all + (x/y)*gpu_target_srcm_anti
|
||||
|
||||
x = nn.gaussian_blur(gpu_target_dst*gpu_target_dstm_anti, sigma)
|
||||
y = 1-nn.gaussian_blur(gpu_target_dstm_all, sigma)
|
||||
y = tf.where(tf.equal(y, 0), tf.ones_like(y), y)
|
||||
gpu_target_dst = gpu_target_dst*gpu_target_dstm_all + (x/y)*gpu_target_dstm_anti
|
||||
|
||||
# process model tensors
|
||||
if 'df' in archi_type:
|
||||
gpu_src_code = self.inter(self.encoder(gpu_warped_src))
|
||||
|
@ -414,6 +438,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
gpu_pred_src_src, gpu_pred_src_srcm = self.decoder_src(gpu_src_code)
|
||||
gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder_dst(gpu_dst_code)
|
||||
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder_src(gpu_dst_code)
|
||||
gpu_pred_src_dst_no_code_grad, _ = self.decoder_src(tf.stop_gradient(gpu_dst_code))
|
||||
|
||||
elif 'liae' in archi_type:
|
||||
gpu_src_code = self.encoder (gpu_warped_src)
|
||||
|
@ -427,7 +452,9 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
|
||||
gpu_pred_src_src, gpu_pred_src_srcm = self.decoder(gpu_src_code)
|
||||
gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder(gpu_dst_code)
|
||||
gpu_pred_dst_dst_no_code_grad, _ = self.decoder(tf.stop_gradient(gpu_dst_code))
|
||||
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)
|
||||
gpu_pred_src_dst_no_code_grad, _ = self.decoder(tf.stop_gradient(gpu_src_dst_code))
|
||||
|
||||
gpu_pred_src_src_list.append(gpu_pred_src_src)
|
||||
gpu_pred_dst_dst_list.append(gpu_pred_dst_dst)
|
||||
|
@ -449,25 +476,31 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
|
||||
gpu_target_srcm_blur = nn.gaussian_blur(gpu_target_srcm, max(1, resolution // 32) )
|
||||
gpu_target_srcm_blur = tf.clip_by_value(gpu_target_srcm_blur, 0, 0.5) * 2
|
||||
gpu_target_srcm_anti_blur = 1.0-gpu_target_srcm_blur
|
||||
|
||||
gpu_target_dstm_blur = nn.gaussian_blur(gpu_target_dstm, max(1, resolution // 32) )
|
||||
gpu_target_dstm_style_blur = gpu_target_dstm_blur #default style mask is 0.5 on boundary
|
||||
gpu_target_dstm_style_anti_blur = 1.0 - gpu_target_dstm_style_blur
|
||||
gpu_target_dstm_blur = tf.clip_by_value(gpu_target_dstm_blur, 0, 0.5) * 2
|
||||
gpu_target_dstm_anti_blur = 1.0-gpu_target_dstm_blur
|
||||
|
||||
gpu_target_dst_masked = gpu_target_dst*gpu_target_dstm_blur
|
||||
gpu_target_dst_style_masked = gpu_target_dst*gpu_target_dstm_style_blur
|
||||
gpu_target_dst_style_anti_masked = gpu_target_dst*(1.0 - gpu_target_dstm_style_blur)
|
||||
gpu_target_dst_style_anti_masked = gpu_target_dst*gpu_target_dstm_style_anti_blur
|
||||
|
||||
gpu_target_src_anti_masked = gpu_target_src*gpu_target_srcm_anti_blur
|
||||
gpu_target_dst_anti_masked = gpu_target_dst*gpu_target_dstm_anti_blur
|
||||
gpu_pred_src_src_anti_masked = gpu_pred_src_src*gpu_target_srcm_anti_blur
|
||||
gpu_pred_dst_dst_anti_masked = gpu_pred_dst_dst*gpu_target_dstm_anti_blur
|
||||
|
||||
gpu_target_src_anti_masked = gpu_target_src*(1.0-gpu_target_srcm_blur)
|
||||
gpu_target_src_masked_opt = gpu_target_src*gpu_target_srcm_blur if masked_training else gpu_target_src
|
||||
gpu_target_dst_masked_opt = gpu_target_dst_masked if masked_training else gpu_target_dst
|
||||
|
||||
gpu_pred_src_src_masked_opt = gpu_pred_src_src*gpu_target_srcm_blur if masked_training else gpu_pred_src_src
|
||||
gpu_pred_src_src_anti_masked = gpu_pred_src_src*(1.0-gpu_target_srcm_blur)
|
||||
gpu_pred_dst_dst_masked_opt = gpu_pred_dst_dst*gpu_target_dstm_blur if masked_training else gpu_pred_dst_dst
|
||||
|
||||
gpu_psd_target_dst_style_masked = gpu_pred_src_dst*gpu_target_dstm_style_blur
|
||||
gpu_psd_target_dst_style_anti_masked = gpu_pred_src_dst*(1.0 - gpu_target_dstm_style_blur)
|
||||
gpu_psd_target_dst_style_anti_masked = gpu_pred_src_dst*gpu_target_dstm_style_anti_blur
|
||||
|
||||
if self.options['loss_function'] == 'MS-SSIM':
|
||||
gpu_src_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0)
|
||||
|
@ -512,7 +545,8 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
|
||||
face_style_power = self.options['face_style_power'] / 100.0
|
||||
if face_style_power != 0 and not self.pretrain:
|
||||
gpu_src_loss += nn.style_loss(gpu_psd_target_dst_style_masked, gpu_target_dst_style_masked, gaussian_blur_radius=resolution//16, loss_weight=10000*face_style_power)
|
||||
gpu_src_loss += nn.style_loss(gpu_pred_src_dst_no_code_grad*tf.stop_gradient(gpu_pred_src_dstm), tf.stop_gradient(gpu_pred_dst_dst*gpu_pred_dst_dstm), gaussian_blur_radius=resolution//8, loss_weight=10000*face_style_power)
|
||||
#gpu_src_loss += nn.style_loss(gpu_psd_target_dst_style_masked, gpu_target_dst_style_masked, gaussian_blur_radius=resolution//16, loss_weight=10000*face_style_power)
|
||||
|
||||
bg_style_power = self.options['bg_style_power'] / 100.0
|
||||
if bg_style_power != 0 and not self.pretrain:
|
||||
|
@ -532,7 +566,6 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
gpu_dst_loss += tf.reduce_mean ( 5*nn.dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/23.2) ), axis=[1])
|
||||
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dst_masked_opt- gpu_pred_dst_dst_masked_opt ), axis=[1,2,3])
|
||||
|
||||
|
||||
if eyes_prio or mouth_prio:
|
||||
if eyes_prio and mouth_prio:
|
||||
gpu_target_part_mask = gpu_target_dstm_eye_mouth
|
||||
|
@ -566,6 +599,9 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
|
||||
gpu_G_loss = gpu_src_loss + gpu_dst_loss
|
||||
|
||||
if learn_dst_bg and masked_training and 'liae' in archi_type:
|
||||
gpu_G_loss += tf.reduce_mean( tf.square(gpu_pred_dst_dst_no_code_grad*gpu_target_dstm_anti_blur-gpu_target_dst_anti_masked),axis=[1,2,3] )
|
||||
|
||||
def DLoss(labels,logits):
|
||||
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=logits), axis=[1,2,3])
|
||||
|
||||
|
@ -750,7 +786,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
|
||||
random_ct_samples_path=training_data_dst_path if ct_mode is not None and not self.pretrain else None
|
||||
|
||||
cpu_count = min(multiprocessing.cpu_count(), 8)
|
||||
cpu_count = multiprocessing.cpu_count()
|
||||
src_generators_count = cpu_count // 2
|
||||
dst_generators_count = cpu_count // 2
|
||||
if ct_mode is not None:
|
||||
|
@ -802,11 +838,15 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
if self.pretrain_just_disabled:
|
||||
self.update_sample_for_preview(force_new=True)
|
||||
|
||||
def dump_ckpt(self):
|
||||
def export_dfm (self):
|
||||
output_path=self.get_strpath_storage_for_file('model.dfm')
|
||||
|
||||
io.log_info(f'Dumping .dfm to {output_path}')
|
||||
|
||||
tf = nn.tf
|
||||
nn.set_data_format('NCHW')
|
||||
|
||||
|
||||
with tf.device ('/CPU:0'):
|
||||
with tf.device (nn.tf_default_device_name):
|
||||
warped_dst = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face')
|
||||
warped_dst = tf.transpose(warped_dst, (0,3,1,2))
|
||||
|
||||
|
@ -830,14 +870,25 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
gpu_pred_dst_dstm = tf.transpose(gpu_pred_dst_dstm, (0,2,3,1))
|
||||
gpu_pred_src_dstm = tf.transpose(gpu_pred_src_dstm, (0,2,3,1))
|
||||
|
||||
|
||||
saver = tf.train.Saver()
|
||||
tf.identity(gpu_pred_dst_dstm, name='out_face_mask')
|
||||
tf.identity(gpu_pred_src_dst, name='out_celeb_face')
|
||||
tf.identity(gpu_pred_src_dstm, name='out_celeb_face_mask')
|
||||
|
||||
saver.save(nn.tf_sess, self.get_strpath_storage_for_file('.ckpt') )
|
||||
output_graph_def = tf.graph_util.convert_variables_to_constants(
|
||||
nn.tf_sess,
|
||||
tf.get_default_graph().as_graph_def(),
|
||||
['out_face_mask','out_celeb_face','out_celeb_face_mask']
|
||||
)
|
||||
|
||||
import tf2onnx
|
||||
with tf.device("/CPU:0"):
|
||||
model_proto, _ = tf2onnx.convert._convert_common(
|
||||
output_graph_def,
|
||||
name='SAEHD',
|
||||
input_names=['in_face:0'],
|
||||
output_names=['out_face_mask:0','out_celeb_face:0','out_celeb_face_mask:0'],
|
||||
opset=9,
|
||||
output_path=output_path)
|
||||
|
||||
#override
|
||||
def get_model_filename_list(self):
|
||||
|
@ -892,7 +943,6 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
self.D_src_dst_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
|
||||
|
||||
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
|
||||
|
||||
#override
|
||||
def onGetPreview(self, samples):
|
||||
( (warped_src, target_src, target_srcm, target_srcm_em),
|
||||
|
|
|
@ -25,17 +25,24 @@ class XSegModel(ModelBase):
|
|||
self.set_iter(0)
|
||||
|
||||
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'wf')
|
||||
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False)
|
||||
|
||||
if self.is_first_run():
|
||||
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head'], help_message="Half / mid face / full face / whole face / head. Choose the same as your deepfake model.").lower()
|
||||
|
||||
if self.is_first_run() or ask_override:
|
||||
self.ask_batch_size(4, range=[2,16])
|
||||
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain)
|
||||
|
||||
if not self.is_exporting and (self.options['pretrain'] and self.get_pretraining_data_path() is None):
|
||||
raise Exception("pretraining_data_path is not defined")
|
||||
|
||||
self.pretrain_just_disabled = (default_pretrain == True and self.options['pretrain'] == False)
|
||||
|
||||
#override
|
||||
def on_initialize(self):
|
||||
device_config = nn.getCurrentDeviceConfig()
|
||||
self.model_data_format = "NCHW" if len(device_config.devices) != 0 and not self.is_debug() else "NHWC"
|
||||
self.model_data_format = "NCHW" if self.is_exporting or (len(device_config.devices) != 0 and not self.is_debug()) else "NHWC"
|
||||
nn.initialize(data_format=self.model_data_format)
|
||||
tf = nn.tf
|
||||
|
||||
|
@ -51,6 +58,7 @@ class XSegModel(ModelBase):
|
|||
'wf' : FaceType.WHOLE_FACE,
|
||||
'head' : FaceType.HEAD}[ self.options['face_type'] ]
|
||||
|
||||
|
||||
place_model_on_cpu = len(devices) == 0
|
||||
models_opt_device = '/CPU:0' if place_model_on_cpu else nn.tf_default_device_name
|
||||
|
||||
|
@ -67,13 +75,16 @@ class XSegModel(ModelBase):
|
|||
optimizer=nn.RMSprop(lr=0.0001, lr_dropout=0.3, name='opt'),
|
||||
data_format=nn.data_format)
|
||||
|
||||
self.pretrain = self.options['pretrain']
|
||||
if self.pretrain_just_disabled:
|
||||
self.set_iter(0)
|
||||
|
||||
if self.is_training:
|
||||
# Adjust batch size for multiple GPU
|
||||
gpu_count = max(1, len(devices) )
|
||||
bs_per_gpu = max(1, self.get_batch_size() // gpu_count)
|
||||
self.set_batch_size( gpu_count*bs_per_gpu)
|
||||
|
||||
|
||||
# Compute losses per GPU
|
||||
gpu_pred_list = []
|
||||
|
||||
|
@ -81,8 +92,6 @@ class XSegModel(ModelBase):
|
|||
gpu_loss_gvs = []
|
||||
|
||||
for gpu_id in range(gpu_count):
|
||||
|
||||
|
||||
with tf.device(f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
|
||||
with tf.device(f'/CPU:0'):
|
||||
# slice on CPU, otherwise all batch data will be transfered to GPU first
|
||||
|
@ -91,9 +100,17 @@ class XSegModel(ModelBase):
|
|||
gpu_target_t = self.model.target_t [batch_slice,:,:,:]
|
||||
|
||||
# process model tensors
|
||||
gpu_pred_logits_t, gpu_pred_t = self.model.flow(gpu_input_t)
|
||||
gpu_pred_logits_t, gpu_pred_t = self.model.flow(gpu_input_t, pretrain=self.pretrain)
|
||||
gpu_pred_list.append(gpu_pred_t)
|
||||
|
||||
|
||||
if self.pretrain:
|
||||
# Structural loss
|
||||
gpu_loss = tf.reduce_mean (5*nn.dssim(gpu_target_t, gpu_pred_t, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
||||
gpu_loss += tf.reduce_mean (5*nn.dssim(gpu_target_t, gpu_pred_t, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
|
||||
# Pixel loss
|
||||
gpu_loss += tf.reduce_mean (10*tf.square(gpu_target_t-gpu_pred_t), axis=[1,2,3])
|
||||
else:
|
||||
gpu_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=gpu_target_t, logits=gpu_pred_logits_t), axis=[1,2,3])
|
||||
|
||||
gpu_losses += [gpu_loss]
|
||||
|
@ -110,6 +127,11 @@ class XSegModel(ModelBase):
|
|||
|
||||
|
||||
# Initializing training and view functions
|
||||
if self.pretrain:
|
||||
def train(input_np, target_np):
|
||||
l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np})
|
||||
return l
|
||||
else:
|
||||
def train(input_np, target_np):
|
||||
l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np })
|
||||
return l
|
||||
|
@ -125,7 +147,16 @@ class XSegModel(ModelBase):
|
|||
src_generators_count = cpu_count // 2
|
||||
dst_generators_count = cpu_count // 2
|
||||
|
||||
|
||||
if self.pretrain:
|
||||
pretrain_gen = SampleGeneratorFace(self.get_pretraining_data_path(), debug=self.is_debug(), batch_size=self.get_batch_size(),
|
||||
sample_process_options=SampleProcessor.Options(random_flip=True),
|
||||
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
],
|
||||
uniform_yaw_distribution=False,
|
||||
generators_count=cpu_count )
|
||||
self.set_training_data_generators ([pretrain_gen])
|
||||
else:
|
||||
srcdst_generator = SampleGeneratorFaceXSeg([self.training_data_src_path, self.training_data_dst_path],
|
||||
debug=self.is_debug(),
|
||||
batch_size=self.get_batch_size(),
|
||||
|
@ -159,14 +190,19 @@ class XSegModel(ModelBase):
|
|||
|
||||
#override
|
||||
def onTrainOneIter(self):
|
||||
image_np, mask_np = self.generate_next_samples()[0]
|
||||
loss = self.train (image_np, mask_np)
|
||||
image_np, target_np = self.generate_next_samples()[0]
|
||||
loss = self.train (image_np, target_np)
|
||||
|
||||
return ( ('loss', np.mean(loss) ), )
|
||||
|
||||
#override
|
||||
def onGetPreview(self, samples):
|
||||
def onGetPreview(self, samples, for_history=False):
|
||||
n_samples = min(4, self.get_batch_size(), 800 // self.resolution )
|
||||
|
||||
if self.pretrain:
|
||||
srcdst_samples, = samples
|
||||
image_np, mask_np = srcdst_samples
|
||||
else:
|
||||
srcdst_samples, src_samples, dst_samples = samples
|
||||
image_np, mask_np = srcdst_samples
|
||||
|
||||
|
@ -178,11 +214,14 @@ class XSegModel(ModelBase):
|
|||
result = []
|
||||
st = []
|
||||
for i in range(n_samples):
|
||||
if self.pretrain:
|
||||
ar = I[i], IM[i]
|
||||
else:
|
||||
ar = I[i]*M[i]+0.5*I[i]*(1-M[i])+0.5*green_bg*(1-M[i]), IM[i], I[i]*IM[i]+0.5*I[i]*(1-IM[i]) + 0.5*green_bg*(1-IM[i])
|
||||
st.append ( np.concatenate ( ar, axis=1) )
|
||||
result += [ ('XSeg training faces', np.concatenate (st, axis=0 )), ]
|
||||
|
||||
if len(src_samples) != 0:
|
||||
if not self.pretrain and len(src_samples) != 0:
|
||||
src_np, = src_samples
|
||||
|
||||
|
||||
|
@ -196,7 +235,7 @@ class XSegModel(ModelBase):
|
|||
|
||||
result += [ ('XSeg src faces', np.concatenate (st, axis=0 )), ]
|
||||
|
||||
if len(dst_samples) != 0:
|
||||
if not self.pretrain and len(dst_samples) != 0:
|
||||
dst_np, = dst_samples
|
||||
|
||||
|
||||
|
@ -212,4 +251,33 @@ class XSegModel(ModelBase):
|
|||
|
||||
return result
|
||||
|
||||
def export_dfm (self):
|
||||
output_path = self.get_strpath_storage_for_file(f'model.onnx')
|
||||
io.log_info(f'Dumping .onnx to {output_path}')
|
||||
tf = nn.tf
|
||||
|
||||
with tf.device (nn.tf_default_device_name):
|
||||
input_t = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face')
|
||||
input_t = tf.transpose(input_t, (0,3,1,2))
|
||||
_, pred_t = self.model.flow(input_t)
|
||||
pred_t = tf.transpose(pred_t, (0,2,3,1))
|
||||
|
||||
tf.identity(pred_t, name='out_mask')
|
||||
|
||||
output_graph_def = tf.graph_util.convert_variables_to_constants(
|
||||
nn.tf_sess,
|
||||
tf.get_default_graph().as_graph_def(),
|
||||
['out_mask']
|
||||
)
|
||||
|
||||
import tf2onnx
|
||||
with tf.device("/CPU:0"):
|
||||
model_proto, _ = tf2onnx.convert._convert_common(
|
||||
output_graph_def,
|
||||
name='XSeg',
|
||||
input_names=['in_face:0'],
|
||||
output_names=['out_mask:0'],
|
||||
opset=13,
|
||||
output_path=output_path)
|
||||
|
||||
Model = XSegModel
|
|
@ -1,6 +1,6 @@
|
|||
tqdm
|
||||
numpy==1.19.3
|
||||
h5py==2.9.0
|
||||
h5py==2.10.0
|
||||
opencv-python==4.1.0.25
|
||||
ffmpeg-python==0.1.17
|
||||
scikit-image==0.14.2
|
||||
|
|
|
@ -96,6 +96,7 @@ class SampleProcessor(object):
|
|||
resolution = opts.get('resolution', None)
|
||||
if resolution is None:
|
||||
continue
|
||||
if resolution not in params_per_resolution:
|
||||
params_per_resolution[resolution] = imagelib.gen_warp_params(resolution,
|
||||
sample_process_options.random_flip,
|
||||
rotation_range=sample_process_options.rotation_range,
|
||||
|
@ -118,6 +119,7 @@ class SampleProcessor(object):
|
|||
random_jpeg = opts.get('random_jpeg', False)
|
||||
motion_blur = opts.get('motion_blur', None)
|
||||
gaussian_blur = opts.get('gaussian_blur', None)
|
||||
denoise_filter = opts.get('denoise_filter', False)
|
||||
random_bilinear_resize = opts.get('random_bilinear_resize', None)
|
||||
random_rgb_levels = opts.get('random_rgb_levels', False)
|
||||
random_hsv_shift = opts.get('random_hsv_shift', False)
|
||||
|
@ -166,6 +168,7 @@ class SampleProcessor(object):
|
|||
img = np.zeros ( sample_bgr.shape[0:2]+(1,), dtype=np.float32)
|
||||
|
||||
if sample_face_type == FaceType.MARK_ONLY:
|
||||
raise NotImplementedError()
|
||||
mat = LandmarksProcessor.get_transform_mat (sample_landmarks, warp_resolution, face_type)
|
||||
img = cv2.warpAffine( img, mat, (warp_resolution, warp_resolution), flags=cv2.INTER_LINEAR )
|
||||
|
||||
|
@ -286,7 +289,9 @@ class SampleProcessor(object):
|
|||
random_mask = sd.random_circle_faded ([resolution,resolution], rnd_state=np.random.RandomState (sample_rnd_seed+4)) if random_circle_mask else None
|
||||
img = imagelib.apply_random_bilinear_resize(img, *random_bilinear_resize, mask=random_mask,rnd_state=np.random.RandomState (sample_rnd_seed+4) )
|
||||
|
||||
|
||||
if denoise_filter:
|
||||
d_size = ( (max(*img.shape[:2]) // 128) + 1 )*2 +1
|
||||
img = cv2.bilateralFilter( np.clip(img*255, 0,255).astype(np.uint8), d_size, 80, 80).astype(np.float32) / 255.0
|
||||
|
||||
# Transform from BGR to desired channel_type
|
||||
if channel_type == SPCT.BGR:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue