mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-22 06:23:20 -07:00
Formatting
This commit is contained in:
parent
9a41965063
commit
0f0df28b9f
2 changed files with 232 additions and 163 deletions
|
@ -12,7 +12,6 @@ from utils.pickle_utils import AntiPickler
|
|||
|
||||
from .Converter import Converter
|
||||
|
||||
|
||||
'''
|
||||
default_mode = {1:'overlay',
|
||||
2:'hist-match',
|
||||
|
@ -21,6 +20,8 @@ default_mode = {1:'overlay',
|
|||
5:'seamless-hist-match',
|
||||
6:'raw'}
|
||||
'''
|
||||
|
||||
|
||||
class ConverterMasked(Converter):
|
||||
|
||||
# override
|
||||
|
@ -51,7 +52,9 @@ class ConverterMasked(Converter):
|
|||
self.face_type = face_type
|
||||
self.clip_hborder_mask_per = clip_hborder_mask_per
|
||||
|
||||
mode = io.input_int ("Choose mode: (1) overlay, (2) hist match, (3) hist match bw, (4) seamless, (5) raw. Default - %d : " % (default_mode) , default_mode)
|
||||
mode = io.input_int(
|
||||
"Choose mode: (1) overlay, (2) hist match, (3) hist match bw, (4) seamless, (5) raw. Default - %d : " % (
|
||||
default_mode), default_mode)
|
||||
|
||||
mode_dict = {1: 'overlay',
|
||||
2: 'hist-match',
|
||||
|
@ -62,7 +65,8 @@ class ConverterMasked(Converter):
|
|||
self.mode = mode_dict.get(mode, mode_dict[default_mode])
|
||||
|
||||
if self.mode == 'raw':
|
||||
mode = io.input_int ("Choose raw mode: (1) rgb, (2) rgb+mask (default), (3) mask only, (4) predicted only : ", 2)
|
||||
mode = io.input_int(
|
||||
"Choose raw mode: (1) rgb, (2) rgb+mask (default), (3) mask only, (4) predicted only : ", 2)
|
||||
self.raw_mode = {1: 'rgb',
|
||||
2: 'rgb-mask',
|
||||
3: 'mask-only',
|
||||
|
@ -78,32 +82,46 @@ class ConverterMasked(Converter):
|
|||
self.masked_hist_match = io.input_bool("Masked hist match? (y/n skip:y) : ", True)
|
||||
|
||||
if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match':
|
||||
self.hist_match_threshold = np.clip ( io.input_int("Hist match threshold [0..255] (skip:255) : ", 255), 0, 255)
|
||||
self.hist_match_threshold = np.clip(io.input_int("Hist match threshold [0..255] (skip:255) : ", 255),
|
||||
0, 255)
|
||||
|
||||
if force_mask_mode != -1:
|
||||
self.mask_mode = force_mask_mode
|
||||
else:
|
||||
if face_type == FaceType.FULL:
|
||||
self.mask_mode = np.clip ( io.input_int ("Mask mode: (1) learned, (2) dst, (3) FAN-prd, (4) FAN-dst , (5) FAN-prd*FAN-dst (6) learned*FAN-prd*FAN-dst (?) help. Default - %d : " % (1) , 1, help_message="If you learned mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images. 'FAN-prd' - using super smooth mask by pretrained FAN-model from predicted face. 'FAN-dst' - using super smooth mask by pretrained FAN-model from dst face. 'FAN-prd*FAN-dst' or 'learned*FAN-prd*FAN-dst' - using multiplied masks."), 1, 6 )
|
||||
self.mask_mode = np.clip(io.input_int(
|
||||
"Mask mode: (1) learned, (2) dst, (3) FAN-prd, (4) FAN-dst , (5) FAN-prd*FAN-dst (6) learned*FAN-prd*FAN-dst (?) help. Default - %d : " % (
|
||||
1), 1,
|
||||
help_message="If you learned mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images. 'FAN-prd' - using super smooth mask by pretrained FAN-model from predicted face. 'FAN-dst' - using super smooth mask by pretrained FAN-model from dst face. 'FAN-prd*FAN-dst' or 'learned*FAN-prd*FAN-dst' - using multiplied masks."),
|
||||
1, 6)
|
||||
else:
|
||||
self.mask_mode = np.clip ( io.input_int ("Mask mode: (1) learned, (2) dst . Default - %d : " % (1) , 1), 1, 2 )
|
||||
self.mask_mode = np.clip(io.input_int("Mask mode: (1) learned, (2) dst . Default - %d : " % (1), 1), 1,
|
||||
2)
|
||||
|
||||
if self.mask_mode >= 3 and self.mask_mode <= 6:
|
||||
self.fan_seg = None
|
||||
|
||||
if self.mode != 'raw':
|
||||
self.erode_mask_modifier = base_erode_mask_modifier + np.clip ( io.input_int ("Choose erode mask modifier [-200..200] (skip:%d) : " % (default_erode_mask_modifier), default_erode_mask_modifier), -200, 200)
|
||||
self.blur_mask_modifier = base_blur_mask_modifier + np.clip ( io.input_int ("Choose blur mask modifier [-200..200] (skip:%d) : " % (default_blur_mask_modifier), default_blur_mask_modifier), -200, 200)
|
||||
self.erode_mask_modifier = base_erode_mask_modifier + np.clip(
|
||||
io.input_int("Choose erode mask modifier [-200..200] (skip:%d) : " % (default_erode_mask_modifier),
|
||||
default_erode_mask_modifier), -200, 200)
|
||||
self.blur_mask_modifier = base_blur_mask_modifier + np.clip(
|
||||
io.input_int("Choose blur mask modifier [-200..200] (skip:%d) : " % (default_blur_mask_modifier),
|
||||
default_blur_mask_modifier), -200, 200)
|
||||
|
||||
self.output_face_scale = np.clip ( 1.0 + io.input_int ("Choose output face scale modifier [-50..50] (skip:0) : ", 0)*0.01, 0.5, 1.5)
|
||||
self.output_face_scale = np.clip(
|
||||
1.0 + io.input_int("Choose output face scale modifier [-50..50] (skip:0) : ", 0) * 0.01, 0.5, 1.5)
|
||||
|
||||
if self.mode != 'raw':
|
||||
self.color_transfer_mode = io.input_str ("Apply color transfer to predicted face? Choose mode ( rct/lct skip:None ) : ", None, ['rct','lct'])
|
||||
self.color_transfer_mode = io.input_str(
|
||||
"Apply color transfer to predicted face? Choose mode ( rct/lct skip:None ) : ", None, ['rct', 'lct'])
|
||||
|
||||
self.super_resolution = io.input_bool("Apply super resolution? (y/n ?:help skip:n) : ", False, help_message="Enhance details by applying DCSCN network.")
|
||||
self.super_resolution = io.input_bool("Apply super resolution? (y/n ?:help skip:n) : ", False,
|
||||
help_message="Enhance details by applying DCSCN network.")
|
||||
|
||||
if self.mode != 'raw':
|
||||
self.final_image_color_degrade_power = np.clip ( io.input_int ("Degrade color power of final image [0..100] (skip:0) : ", 0), 0, 100)
|
||||
self.final_image_color_degrade_power = np.clip(
|
||||
io.input_int("Degrade color power of final image [0..100] (skip:0) : ", 0), 0, 100)
|
||||
self.alpha = io.input_bool("Export png with alpha channel? (y/n skip:n) : ", False)
|
||||
|
||||
io.log_info("")
|
||||
|
@ -141,10 +159,12 @@ class ConverterMasked(Converter):
|
|||
output_size *= 2
|
||||
|
||||
face_mat = LandmarksProcessor.get_transform_mat(img_face_landmarks, output_size, face_type=self.face_type)
|
||||
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=self.face_type, scale=self.output_face_scale)
|
||||
face_output_mat = LandmarksProcessor.get_transform_mat(img_face_landmarks, output_size,
|
||||
face_type=self.face_type, scale=self.output_face_scale)
|
||||
|
||||
dst_face_bgr = cv2.warpAffine(img_bgr, face_mat, (output_size, output_size), flags=cv2.INTER_LANCZOS4)
|
||||
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size), flags=cv2.INTER_LANCZOS4 )
|
||||
dst_face_mask_a_0 = cv2.warpAffine(img_face_mask_a, face_mat, (output_size, output_size),
|
||||
flags=cv2.INTER_LANCZOS4)
|
||||
|
||||
predictor_input_bgr = cv2.resize(dst_face_bgr, (self.predictor_input_size, self.predictor_input_size))
|
||||
|
||||
|
@ -161,11 +181,15 @@ class ConverterMasked(Converter):
|
|||
if self.super_resolution:
|
||||
if debug:
|
||||
tmp = cv2.resize(prd_face_bgr, (output_size, output_size), cv2.INTER_CUBIC)
|
||||
debugs += [ np.clip( cv2.warpAffine( tmp, face_output_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
debugs += [np.clip(cv2.warpAffine(tmp, face_output_mat, img_size, img_bgr.copy(),
|
||||
cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT), 0,
|
||||
1.0)]
|
||||
|
||||
prd_face_bgr = self.dc_upscale(prd_face_bgr)
|
||||
if debug:
|
||||
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
debugs += [np.clip(cv2.warpAffine(prd_face_bgr, face_output_mat, img_size, img_bgr.copy(),
|
||||
cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT), 0,
|
||||
1.0)]
|
||||
|
||||
if self.predictor_masked:
|
||||
prd_face_mask_a_0 = cv2.resize(prd_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
|
||||
|
@ -201,19 +225,21 @@ class ConverterMasked(Converter):
|
|||
prd_face_mask_a = prd_face_mask_a_0[..., np.newaxis]
|
||||
prd_face_mask_aaa = np.repeat(prd_face_mask_a, (3,), axis=-1)
|
||||
|
||||
img_face_mask_aaa = cv2.warpAffine( prd_face_mask_aaa, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4 )
|
||||
img_face_mask_aaa = cv2.warpAffine(prd_face_mask_aaa, face_output_mat, img_size,
|
||||
np.zeros(img_bgr.shape, dtype=np.float32),
|
||||
flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4)
|
||||
img_face_mask_aaa = np.clip(img_face_mask_aaa, 0.0, 1.0)
|
||||
img_face_mask_aaa[img_face_mask_aaa <= 0.1] = 0.0 # get rid of noise
|
||||
|
||||
if debug:
|
||||
debugs += [img_face_mask_aaa.copy()]
|
||||
|
||||
|
||||
out_img = img_bgr.copy()
|
||||
|
||||
if self.mode == 'raw':
|
||||
if self.raw_mode == 'rgb' or self.raw_mode == 'rgb-mask':
|
||||
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||
out_img = cv2.warpAffine(prd_face_bgr, face_output_mat, img_size, out_img,
|
||||
cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT)
|
||||
|
||||
if self.raw_mode == 'rgb-mask':
|
||||
out_img = np.concatenate([out_img, np.expand_dims(img_face_mask_aaa[:, :, 0], -1)], -1)
|
||||
|
@ -222,7 +248,9 @@ class ConverterMasked(Converter):
|
|||
out_img = img_face_mask_aaa
|
||||
|
||||
if self.raw_mode == 'predicted-only':
|
||||
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(out_img.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||
out_img = cv2.warpAffine(prd_face_bgr, face_output_mat, img_size,
|
||||
np.zeros(out_img.shape, dtype=np.float32),
|
||||
cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT)
|
||||
|
||||
else:
|
||||
# averaging [lenx, leny, maskx, masky] by grayscale gradients of upscaled mask
|
||||
|
@ -249,9 +277,13 @@ class ConverterMasked(Converter):
|
|||
if debug:
|
||||
io.log_info("erode_size = %d" % (ero))
|
||||
if ero > 0:
|
||||
img_face_mask_aaa = cv2.erode(img_face_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
|
||||
img_face_mask_aaa = cv2.erode(img_face_mask_aaa,
|
||||
cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (ero, ero)),
|
||||
iterations=1)
|
||||
elif ero < 0:
|
||||
img_face_mask_aaa = cv2.dilate(img_face_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
|
||||
img_face_mask_aaa = cv2.dilate(img_face_mask_aaa,
|
||||
cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (-ero, -ero)),
|
||||
iterations=1)
|
||||
|
||||
img_mask_blurry_aaa = img_face_mask_aaa
|
||||
|
||||
|
@ -260,9 +292,12 @@ class ConverterMasked(Converter):
|
|||
prd_border_size = int(prd_hborder_rect_mask_a.shape[1] * self.clip_hborder_mask_per)
|
||||
prd_hborder_rect_mask_a[:, 0:prd_border_size, :] = 0
|
||||
prd_hborder_rect_mask_a[:, -prd_border_size:, :] = 0
|
||||
prd_hborder_rect_mask_a = np.expand_dims(cv2.blur(prd_hborder_rect_mask_a, (prd_border_size, prd_border_size) ),-1)
|
||||
prd_hborder_rect_mask_a = np.expand_dims(
|
||||
cv2.blur(prd_hborder_rect_mask_a, (prd_border_size, prd_border_size)), -1)
|
||||
|
||||
img_prd_hborder_rect_mask_a = cv2.warpAffine( prd_hborder_rect_mask_a, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4 )
|
||||
img_prd_hborder_rect_mask_a = cv2.warpAffine(prd_hborder_rect_mask_a, face_output_mat, img_size,
|
||||
np.zeros(img_bgr.shape, dtype=np.float32),
|
||||
cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4)
|
||||
img_prd_hborder_rect_mask_a = np.expand_dims(img_prd_hborder_rect_mask_a, -1)
|
||||
img_mask_blurry_aaa *= img_prd_hborder_rect_mask_a
|
||||
img_mask_blurry_aaa = np.clip(img_mask_blurry_aaa, 0, 1.0)
|
||||
|
@ -286,26 +321,39 @@ class ConverterMasked(Converter):
|
|||
if 'seamless' not in self.mode and self.color_transfer_mode is not None:
|
||||
if self.color_transfer_mode == 'rct':
|
||||
if debug:
|
||||
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
debugs += [np.clip(cv2.warpAffine(prd_face_bgr, face_output_mat, img_size,
|
||||
np.zeros(img_bgr.shape, dtype=np.float32),
|
||||
cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4,
|
||||
cv2.BORDER_TRANSPARENT), 0, 1.0)]
|
||||
|
||||
prd_face_bgr = imagelib.reinhard_color_transfer ( np.clip( (prd_face_bgr*255).astype(np.uint8), 0, 255),
|
||||
prd_face_bgr = imagelib.reinhard_color_transfer(
|
||||
np.clip((prd_face_bgr * 255).astype(np.uint8), 0, 255),
|
||||
np.clip((dst_face_bgr * 255).astype(np.uint8), 0, 255),
|
||||
source_mask=prd_face_mask_a, target_mask=prd_face_mask_a)
|
||||
prd_face_bgr = np.clip(prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
|
||||
|
||||
if debug:
|
||||
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
debugs += [np.clip(cv2.warpAffine(prd_face_bgr, face_output_mat, img_size,
|
||||
np.zeros(img_bgr.shape, dtype=np.float32),
|
||||
cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4,
|
||||
cv2.BORDER_TRANSPARENT), 0, 1.0)]
|
||||
|
||||
|
||||
elif self.color_transfer_mode == 'lct':
|
||||
if debug:
|
||||
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
debugs += [np.clip(cv2.warpAffine(prd_face_bgr, face_output_mat, img_size,
|
||||
np.zeros(img_bgr.shape, dtype=np.float32),
|
||||
cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4,
|
||||
cv2.BORDER_TRANSPARENT), 0, 1.0)]
|
||||
|
||||
prd_face_bgr = imagelib.linear_color_transfer(prd_face_bgr, dst_face_bgr)
|
||||
prd_face_bgr = np.clip(prd_face_bgr, 0.0, 1.0)
|
||||
|
||||
if debug:
|
||||
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
debugs += [np.clip(cv2.warpAffine(prd_face_bgr, face_output_mat, img_size,
|
||||
np.zeros(img_bgr.shape, dtype=np.float32),
|
||||
cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4,
|
||||
cv2.BORDER_TRANSPARENT), 0, 1.0)]
|
||||
|
||||
if self.mode == 'hist-match-bw':
|
||||
prd_face_bgr = cv2.cvtColor(prd_face_bgr, cv2.COLOR_BGR2GRAY)
|
||||
|
@ -313,7 +361,9 @@ class ConverterMasked(Converter):
|
|||
|
||||
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
|
||||
if debug:
|
||||
debugs += [ cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ) ]
|
||||
debugs += [cv2.warpAffine(prd_face_bgr, face_output_mat, img_size,
|
||||
np.zeros(img_bgr.shape, dtype=np.float32),
|
||||
cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT)]
|
||||
|
||||
hist_mask_a = np.ones(prd_face_bgr.shape[:2] + (1,), dtype=np.float32)
|
||||
|
||||
|
@ -336,7 +386,8 @@ class ConverterMasked(Converter):
|
|||
if self.mode == 'hist-match-bw':
|
||||
prd_face_bgr = prd_face_bgr.astype(dtype=np.float32)
|
||||
|
||||
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||
out_img = cv2.warpAffine(prd_face_bgr, face_output_mat, img_size, out_img,
|
||||
cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT)
|
||||
out_img = np.clip(out_img, 0.0, 1.0)
|
||||
|
||||
if debug:
|
||||
|
@ -363,14 +414,17 @@ class ConverterMasked(Converter):
|
|||
l, t, w, h = cv2.boundingRect((img_face_seamless_mask_a * 255).astype(np.uint8))
|
||||
s_maskx, s_masky = int(l + w / 2), int(t + h / 2)
|
||||
|
||||
out_img = cv2.seamlessClone( (out_img*255).astype(np.uint8), (img_bgr*255).astype(np.uint8), (img_face_seamless_mask_a*255).astype(np.uint8), (s_maskx,s_masky) , cv2.NORMAL_CLONE )
|
||||
out_img = cv2.seamlessClone((out_img * 255).astype(np.uint8), (img_bgr * 255).astype(np.uint8),
|
||||
(img_face_seamless_mask_a * 255).astype(np.uint8),
|
||||
(s_maskx, s_masky), cv2.NORMAL_CLONE)
|
||||
out_img = out_img.astype(dtype=np.float32) / 255.0
|
||||
except Exception as e:
|
||||
# seamlessClone may fail in some cases
|
||||
e_str = traceback.format_exc()
|
||||
|
||||
if 'MemoryError' in e_str:
|
||||
raise Exception("Seamless fail: " + e_str) #reraise MemoryError in order to reprocess this data by other processes
|
||||
raise Exception(
|
||||
"Seamless fail: " + e_str) # reraise MemoryError in order to reprocess this data by other processes
|
||||
else:
|
||||
print("Seamless fail: " + e_str)
|
||||
|
||||
|
@ -384,34 +438,49 @@ class ConverterMasked(Converter):
|
|||
|
||||
if self.color_transfer_mode == 'rct':
|
||||
if debug:
|
||||
debugs += [ np.clip( cv2.warpAffine( out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
debugs += [np.clip(cv2.warpAffine(out_face_bgr, face_output_mat, img_size,
|
||||
np.zeros(img_bgr.shape, dtype=np.float32),
|
||||
cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4,
|
||||
cv2.BORDER_TRANSPARENT), 0, 1.0)]
|
||||
|
||||
new_out_face_bgr = imagelib.reinhard_color_transfer ( np.clip( (out_face_bgr*255).astype(np.uint8), 0, 255),
|
||||
new_out_face_bgr = imagelib.reinhard_color_transfer(
|
||||
np.clip((out_face_bgr * 255).astype(np.uint8), 0, 255),
|
||||
np.clip((dst_face_bgr * 255).astype(np.uint8), 0, 255),
|
||||
source_mask=face_mask_blurry_aaa, target_mask=face_mask_blurry_aaa)
|
||||
new_out_face_bgr = np.clip(new_out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
|
||||
|
||||
if debug:
|
||||
debugs += [ np.clip( cv2.warpAffine( new_out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
debugs += [np.clip(cv2.warpAffine(new_out_face_bgr, face_output_mat, img_size,
|
||||
np.zeros(img_bgr.shape, dtype=np.float32),
|
||||
cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4,
|
||||
cv2.BORDER_TRANSPARENT), 0, 1.0)]
|
||||
|
||||
|
||||
elif self.color_transfer_mode == 'lct':
|
||||
if debug:
|
||||
debugs += [ np.clip( cv2.warpAffine( out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
debugs += [np.clip(cv2.warpAffine(out_face_bgr, face_output_mat, img_size,
|
||||
np.zeros(img_bgr.shape, dtype=np.float32),
|
||||
cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4,
|
||||
cv2.BORDER_TRANSPARENT), 0, 1.0)]
|
||||
|
||||
new_out_face_bgr = imagelib.linear_color_transfer(out_face_bgr, dst_face_bgr)
|
||||
new_out_face_bgr = np.clip(new_out_face_bgr, 0.0, 1.0)
|
||||
|
||||
if debug:
|
||||
debugs += [ np.clip( cv2.warpAffine( new_out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
debugs += [np.clip(cv2.warpAffine(new_out_face_bgr, face_output_mat, img_size,
|
||||
np.zeros(img_bgr.shape, dtype=np.float32),
|
||||
cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4,
|
||||
cv2.BORDER_TRANSPARENT), 0, 1.0)]
|
||||
|
||||
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||
new_out = cv2.warpAffine(new_out_face_bgr, face_mat, img_size, img_bgr.copy(),
|
||||
cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT)
|
||||
out_img = np.clip(img_bgr * (1 - img_mask_blurry_aaa) + (new_out * img_mask_blurry_aaa), 0, 1.0)
|
||||
|
||||
if self.mode == 'seamless-hist-match':
|
||||
out_face_bgr = cv2.warpAffine(out_img, face_mat, (output_size, output_size))
|
||||
new_out_face_bgr = imagelib.color_hist_match(out_face_bgr, dst_face_bgr, self.hist_match_threshold)
|
||||
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||
new_out = cv2.warpAffine(new_out_face_bgr, face_mat, img_size, img_bgr.copy(),
|
||||
cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT)
|
||||
out_img = np.clip(img_bgr * (1 - img_mask_blurry_aaa) + (new_out * img_mask_blurry_aaa), 0, 1.0)
|
||||
|
||||
if self.final_image_color_degrade_power != 0:
|
||||
|
|
|
@ -224,9 +224,9 @@ class SampleProcessor(object):
|
|||
if ct_sample_bgr is None:
|
||||
ct_sample_bgr = ct_sample.load_bgr()
|
||||
|
||||
ct_sample_bgr_resized = cv2.resize(ct_sample_bgr, (resolution, resolution), cv2.INTER_LINEAR)
|
||||
# ct_sample_bgr_resized = cv2.resize(ct_sample_bgr, (resolution, resolution), cv2.INTER_LINEAR)
|
||||
|
||||
img_bgr = imagelib.linear_color_transfer(img_bgr, ct_sample_bgr_resized)
|
||||
img_bgr = imagelib.reinhard_color_transfer(img_bgr, ct_sample_bgr[..., 0:3])
|
||||
img_bgr = np.clip(img_bgr, 0.0, 1.0)
|
||||
|
||||
if normalize_std_dev:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue