support preview or not when train(resolve cannot connect to X server)

This commit is contained in:
plucky 2019-01-01 18:20:43 +08:00
commit 069d385ce0
3 changed files with 12 additions and 6 deletions

View file

@ -176,6 +176,9 @@ Video tutorial: https://www.youtube.com/watch?v=K98nTNjXkq8
Windows 10 consumes % of VRAM even if card unused for video output.
### For Mac Users
Check out [DockerCPU.md](DockerCPU.md) for more detailed instructions.
### **Problem of the year**:
algorithm of overlaying neural face onto video face located in ConverterMasked.py.

View file

@ -80,6 +80,7 @@ if __name__ == "__main__":
model_path=arguments.model_dir,
model_name=arguments.model_name,
debug = arguments.debug,
preview = arguments.preview,
#**options
batch_size = arguments.batch_size,
write_preview_history = arguments.write_preview_history,
@ -106,8 +107,9 @@ if __name__ == "__main__":
train_parser.add_argument('--force-best-gpu-idx', type=int, dest="force_best_gpu_idx", default=-1, help="Force to choose this GPU idx as best(worst).")
train_parser.add_argument('--multi-gpu', action="store_true", dest="multi_gpu", default=False, help="MultiGPU option. It will select only same best(worst) GPU models.")
train_parser.add_argument('--force-gpu-idxs', type=str, dest="force_gpu_idxs", default=None, help="Override final GPU idxs. Example: 0,1,2.")
train_parser.add_argument('--cpu-only', action="store_true", dest="cpu_only", default=False, help="Train on CPU.")
train_parser.add_argument('--cpu-only', action="store_true", dest="cpu_only", default=False, help="Train on CPU.")
train_parser.add_argument('--preview', action="store_true",dest="preview", default=False, help="Show preview.")
train_parser.set_defaults (func=process_train)
def process_convert(arguments):

View file

@ -277,13 +277,14 @@ def previewThread (input_queue, output_queue):
cv2.destroyAllWindows()
def main (training_data_src_dir, training_data_dst_dir, model_path, model_name, **in_options):
print ("Running trainer.\r\n")
def main (training_data_src_dir, training_data_dst_dir, model_path, model_name,preview, **in_options):
print ("Running trainer(preview=%s).\r\n" % (preview))
output_queue = queue.Queue()
input_queue = queue.Queue()
import threading
thread = threading.Thread(target=trainerThread, args=(output_queue, input_queue, training_data_src_dir, training_data_dst_dir, model_path, model_name), kwargs=in_options )
thread.start()
previewThread (input_queue, output_queue)
if preview:
previewThread (input_queue, output_queue)