mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-20 05:23:22 -07:00
update == 04.20.2019 == (#242)
* superb improved fanseg * _ * _ * added FANseg extractor for src and dst faces to use it in training * - * _ * _ * update to 'partial' func * _ * trained FANSeg_256_full_face.h5, new experimental models: AVATAR, RecycleGAN * _ * _ * _ * fix for TCC mode cards(tesla), was conflict with plaidML initialization. * _ * update manuals * _
This commit is contained in:
parent
7be2fd67f5
commit
046649e6be
32 changed files with 1152 additions and 329 deletions
|
@ -1,40 +1,50 @@
|
|||
from .Converter import Converter
|
||||
from facelib import LandmarksProcessor
|
||||
from facelib import FaceType
|
||||
import time
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
'''
|
||||
predictor_func:
|
||||
input: [predictor_input_size, predictor_input_size, BGR]
|
||||
output: [predictor_input_size, predictor_input_size, BGR]
|
||||
'''
|
||||
from facelib import FaceType, LandmarksProcessor
|
||||
from joblib import SubprocessFunctionCaller
|
||||
from utils.pickle_utils import AntiPickler
|
||||
|
||||
from .Converter import Converter
|
||||
|
||||
class ConverterImage(Converter):
|
||||
|
||||
#override
|
||||
def __init__(self, predictor_func,
|
||||
predictor_input_size=0,
|
||||
output_size=0):
|
||||
predictor_input_size=0):
|
||||
|
||||
super().__init__(predictor_func, Converter.TYPE_IMAGE)
|
||||
|
||||
self.predictor_input_size = predictor_input_size
|
||||
self.output_size = output_size
|
||||
|
||||
#dummy predict and sleep, tensorflow caching kernels. If remove it, conversion speed will be x2 slower
|
||||
predictor_func ( np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ) )
|
||||
time.sleep(2)
|
||||
|
||||
#override
|
||||
def dummy_predict(self):
|
||||
self.predictor_func ( np.zeros ( (self.predictor_input_size, self.predictor_input_size,3), dtype=np.float32) )
|
||||
predictor_func_host, predictor_func = SubprocessFunctionCaller.make_pair(predictor_func)
|
||||
self.predictor_func_host = AntiPickler(predictor_func_host)
|
||||
self.predictor_func = predictor_func
|
||||
|
||||
#overridable
|
||||
def on_host_tick(self):
|
||||
self.predictor_func_host.obj.process_messages()
|
||||
|
||||
#override
|
||||
def convert_image (self, img_bgr, img_landmarks, debug):
|
||||
def cli_convert_image (self, img_bgr, img_landmarks, debug):
|
||||
img_size = img_bgr.shape[1], img_bgr.shape[0]
|
||||
|
||||
predictor_input_bgr = cv2.resize ( img_bgr, (self.predictor_input_size, self.predictor_input_size), cv2.INTER_LANCZOS4 )
|
||||
predicted_bgr = self.predictor_func ( predictor_input_bgr )
|
||||
|
||||
if debug:
|
||||
debugs = [predictor_input_bgr]
|
||||
|
||||
output = self.predictor_func ( predictor_input_bgr )
|
||||
|
||||
output = cv2.resize ( predicted_bgr, (self.output_size, self.output_size), cv2.INTER_LANCZOS4 )
|
||||
if debug:
|
||||
return (predictor_input_bgr,output,)
|
||||
return output
|
||||
if debug:
|
||||
debugs += [out_img.copy()]
|
||||
|
||||
return debugs if debug else output
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue