diff --git a/models/Model_SAEHD/Model.py b/models/Model_SAEHD/Model.py index 13c7e0a..c6aa24e 100644 --- a/models/Model_SAEHD/Model.py +++ b/models/Model_SAEHD/Model.py @@ -443,15 +443,15 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... elif mouth_prio: gpu_target_part_mask = gpu_target_srcm_mouth - if self.options['ms_ssim_loss']: - gpu_src_loss += tf.reduce_mean ( 10*nn.MsSsim(resolution)(gpu_target_src*gpu_target_part_mask, gpu_pred_src_src*gpu_target_part_mask, max_val=1.0)) - else: - gpu_src_loss += tf.reduce_mean ( 300*tf.abs ( gpu_target_src*gpu_target_part_mask - gpu_pred_src_src*gpu_target_part_mask ), axis=[1,2,3]) + # if self.options['ms_ssim_loss']: + # gpu_src_loss += tf.reduce_mean ( 10*nn.MsSsim(resolution)(gpu_target_src*gpu_target_part_mask, gpu_pred_src_src*gpu_target_part_mask, max_val=1.0)) + # else: + gpu_src_loss += tf.reduce_mean ( 300*tf.abs ( gpu_target_src*gpu_target_part_mask - gpu_pred_src_src*gpu_target_part_mask ), axis=[1,2,3]) - if self.options['ms_ssim_loss']: - gpu_src_loss += tf.reduce_mean ( 10*nn.MsSsim(resolution)(gpu_target_srcm, gpu_pred_src_srcm, max_val=1.0)) - else: - gpu_src_loss += tf.reduce_mean ( 10*tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] ) + # if self.options['ms_ssim_loss']: + # gpu_src_loss += tf.reduce_mean ( 10*nn.MsSsim(resolution)(gpu_target_srcm, gpu_pred_src_srcm, max_val=1.0)) + # else: + gpu_src_loss += tf.reduce_mean ( 10*tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] ) face_style_power = self.options['face_style_power'] / 100.0 if face_style_power != 0 and not self.pretrain: @@ -481,15 +481,15 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... elif mouth_prio: gpu_target_part_mask = gpu_target_dstm_mouth - if self.options['ms_ssim_loss']: - gpu_dst_loss += tf.reduce_mean ( 10*nn.MsSsim(resolution)(gpu_target_dst*gpu_target_part_mask, gpu_pred_dst_dst*gpu_target_part_mask, max_val=1.0)) - else: - gpu_dst_loss += tf.reduce_mean ( 300*tf.abs ( gpu_target_dst*gpu_target_part_mask - gpu_pred_dst_dst*gpu_target_part_mask ), axis=[1,2,3]) + # if self.options['ms_ssim_loss']: + # gpu_dst_loss += tf.reduce_mean ( 10*nn.MsSsim(resolution)(gpu_target_dst*gpu_target_part_mask, gpu_pred_dst_dst*gpu_target_part_mask, max_val=1.0)) + # else: + gpu_dst_loss += tf.reduce_mean ( 300*tf.abs ( gpu_target_dst*gpu_target_part_mask - gpu_pred_dst_dst*gpu_target_part_mask ), axis=[1,2,3]) - if self.options['ms_ssim_loss']: - gpu_dst_loss += tf.reduce_mean ( 10*nn.MsSsim(resolution)(gpu_target_dstm, gpu_pred_dst_dstm, max_val=1.0)) - else: - gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] ) + # if self.options['ms_ssim_loss']: + # gpu_dst_loss += tf.reduce_mean ( 10*nn.MsSsim(resolution)(gpu_target_dstm, gpu_pred_dst_dstm, max_val=1.0)) + # else: + gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] ) gpu_src_losses += [gpu_src_loss] gpu_dst_losses += [gpu_dst_loss]